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Preface
If you are still in the old fixed pipeline days and your OpenGL knowledge is a little 
bit rusty, or if you want to jump from OpenGL|ES to a more complete and modern 
version of OpenGL, then this book is for you. Inside the pages of this book, you will 
find the details of the most recent OpenGL Shading Language Version: 4.3.

This book has been written looking forward in the OpenGL specification.  
No old functionalities or deprecated code will be found in this book, just the  
plain 4.3 Version.

What this book covers
Chapter 1, The Graphics Rendering Pipeline, starts with a brief introduction to the 
rendering pipeline and moves on to give an overview of the programmable stages.

Chapter 2, GLSL Basics, covers language basics, types, vector operations, flow control, 
preprocessor, and shader inputs and outputs.

Chapter 3, Vertex Shaders, looks at the vertex programmable stage, uniform variables 
and basic lighting, and vertex shader examples.

Chapter 4, Fragment Shaders, looks at the execution model, inputs and outputs,  
and examples.

Chapter 5, Geometry Shaders, looks at geometry shader structure, interface blocks,  
and examples.

Chapter 6, Compute Shaders, covers the execution model, GPGPU basics, render to  
texture, and basic raw computations.
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What you need for this book
In order to run the samples from this book, you will need a text editor and a C/C++ 
compiler. For the text editor, a free editor such as Notepad++ or SciTE could be used, 
and for the C/C++ compiler, GCC/G++, or Visual Studio (the Express version is 
free) are the best choices. As we are addressing the latest OpenGL version,  
a graphics card that supports at least OpenGL 4.3 will be needed.

Who this book is for
This book is for people who have some experience or basic knowledge in  
computer graphics and who want to upgrade their knowledge to the latest OpenGL 
version. It is also for people who want to take the jump from the fixed pipeline to the 
programmable pipeline.

Conventions
In this book, you will find a number of styles of text that distinguish between 
different kinds of information. Here are some examples of these styles, and an 
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions, 
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: 
"The buffer keyword denotes the type of the interface block."

A block of code is set as follows:

layout(std430, binding = 0) buffer InputBufferA{float inA[];};
layout(std430, binding = 1) buffer InputBufferB{float inB[];};
layout(std430, binding=2) buffer OutputBuffer{float outBuffer[];};

When we wish to draw your attention to a particular part of a code block, the 
relevant lines or items are set in bold:

layout(std430, binding = 0) buffer InputBufferA{float inA[];};
layout(std430, binding = 1) buffer InputBufferB{float inB[];};
layout(std430, binding=2) buffer OutputBuffer{float outBuffer[];};

New terms and important words are shown in bold.
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Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about 
this book—what you liked or may have disliked. Reader feedback is important for  
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, 
and mention the book title via the subject of your message. If there is a topic that you 
have expertise in and you are interested in either writing or contributing to a book, 
see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to 
help you to get the most from your purchase.

Downloading the color images of this book
We also provide you a PDF file that has color images of the screenshots/diagrams
used in this book. The color images will help you better understand the changes in
the output. You can download this file from: http://www.packtpub.com/sites/
default/files/downloads/8009ot_graphics.pdf.
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Errata
Although we have taken every care to ensure the accuracy of our content, mistakes 
do happen. If you find a mistake in one of our books—maybe a mistake in the text or 
the code—we would be grateful if you would report this to us. By doing so, you can 
save other readers from frustration and help us improve subsequent versions of this 
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the errata submission form link, 
and entering the details of your errata. Once your errata are verified, your submission 
will be accepted and the errata will be uploaded on our website, or added to any list of 
existing errata, under the Errata section of that title. Any existing errata can be viewed 
by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. 
At Packt, we take the protection of our copyright and licenses very seriously. If you 
come across any illegal copies of our works, in any form, on the Internet, please 
provide us with the location address or website name immediately so that we can 
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected  
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you 
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with 
any aspect of the book, and we will do our best to address it.



The Graphics  
Rendering Pipeline

If this is your first approach to shader technology, you should know a few things 
before we start writing GLSL code. The differences between the usual CPU 
architecture and a GPU are big enough to warrant mentioning them.

When you programmed applications in the past, you were aware of the underlying 
hardware: it has a CPU, an ALU, and memory (both volatile or for massive storage) 
and certain types of I/O devices (keyboard, screen, and so on). You also knew that 
your program would run sequentially, one instruction after another (unless you use 
multithreading, but that is not the point). When programming shaders, they will be 
running in an isolated unit called GPU, which has a very different architecture than 
the one you are used to.

Now, your application will run in a massive parallel environment. The I/O devices 
are totally different; you won't have direct access of any kind of memory, nor will it 
be generic for you to use at your will. Also, the system will spawn your program in 
tens or hundreds of instances, as if they were running using hundreds  
of real hardware threads.

In order to understand this fairly new architecture, this chapter will cover the 
following topics:

•	 A brief history of graphics hardware
•	 The Graphics Rendering Pipeline
•	 Types of shaders
•	 The shader environment
•	 Scalar versus vectorial execution
•	 Parallel execution
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A brief history of graphics hardware
Graphics hardware (also called a graphics card or GPU) is not only a bunch of 
transistors that receive some generic orders and input data; it acts consequently like 
a CPU does. Orders issued to the hardware must be consistent and have an explicit 
and well known order at every stage. There are also data requirements in order to 
make things work as expected (for example, you cannot use vertices as input for 
fragment shaders, or textures as output in geometry shaders). Data and orders must 
follow a path and have to pass through some stages, and that cannot be altered.

This path is commonly called The Graphics Rendering Pipeline. Think of it like a pipe 
where we insert some data into one end—vertices, textures, shaders—and they start to 
travel through some small machines that perform very precise and concrete operations 
on the data and produce the final output at the other end: the final rendering.

In the early OpenGL years, the Graphics Rendering Pipeline was completely fixed, 
which means that the data always had to go through the same small machines, 
that always did the same operations, in the same order, and no operation could be 
skipped. These were the pre-shader ages (2002 and earlier).

The following is a simplified representation of the fixed pipeline, showing the most 
important building blocks and how the data flows through:

Transform and Lighting

Geometry Stage
(Per vertex)

Model Space

World Space

Clip Space

Clipping

Perspective division

Viewport transform

Vertex Data

R
A
S
T
E
R
I
Z
E
R

Fixed Texture Stage

Blending

Depth test

Scissor test

Alpha test

Stencil test

Per fragment
processing

Framebuffer

Textures
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Between the years 2002 and 2004, some kind of programmability inside the GPU was 
made available, replacing some of those fixed stages. Those were the first shaders that 
graphics programmers had to code in a pseudo assembler language, and were very 
platform specific. In fact, programmers had to code at least one shader variant for 
each graphics hardware vendor, because they didn't share even the same assembler 
language, but at least they were able to replace some of the old-fashioned fixed 
pipeline stages by small low-level programs. Nonetheless, this was the beginning  
of the biggest revolution in real-time graphics programming history.

Some companies provided the programmers with other high-level programming 
solutions, such as Cg (from NVidia) or HLSL (from Microsoft), but those solutions 
weren't multiplatform. Cg was only usable with NVidia GPUs and HLSL was part  
of Direct3D.

During the year 2004, some companies realized the need for a high-level shader 
language, which would be common for different platforms; something like a 
standard for shader programming. Hence, OpenGL Shading Language (GLSL) was 
born and it allowed programmers to replace their multiple assembler code paths by 
a unique (at least in theory, because different GPUs have different capabilities) C-like 
shader, common for every hardware vendor.

In that year, only two pieces of the fixed pipeline could be replaced: the vertex 
processing unit, which took care of transform and lighting (T&L), and the fragment 
processing unit which was responsible for assigning colors to pixels. Those new 
programmable units were called vertex shaders and fragment shaders respectively. 
Also, another two stages were added later; geometry shaders and compute shaders 
were added to the official OpenGL specification in 2008 and 2012 respectively.
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The following diagram shows an aspect of the new programmable pipeline after 
programmability changes:

Vertex Shader

Geometry Stage
(Per vertex)

Clipping

Perspective division

Viewport transform

Vertex Data

R
A
S
T
E
R
I
Z
E
R Fragment Shader

Blending

Depth test

Scissor test

Alpha test

Stencil test

Per fragment
processing

Framebuffer

Textures

Fragment Stage (Per fragment)

Geometry Shader

Textures

Compute Shader

The Graphics Rendering Pipeline
In accordance with the programmable pipeline diagram, I'll describe, in a 
summarized way, the module that the data goes through to explain how it is 
transformed in every stage.

Geometry stages (per-vertex operations)
This block of stages focuses on the transformation of vertex data from its initial state 
(model coordinates system) to its final state (viewport coordinates system):

•	 Vertex data: This is the input data for the whole process. Here we feed 
the pipeline with all the vectorial data of our geometry: vertices, normals, 
indices, tangents, binormals, texture coordinates, and so on.



Chapter 1

[ 9 ]

•	 Textures: When shaders showed up, this new input for the vertex stage  
was possible. In addition to making our renders colorful, textures might  
serve as an input in vertex and geometry shaders, to, for example, displace 
vertices according with the values stored into a texture (displacement 
mapping technique).

•	 Vertex shader: This system is responsible for the transformation of the 
vertices from their local coordinate system to the clip space, applying  
the adequate transform matrices (model, view, and projection).

•	 Geometry shader: New primitives could be generated using this module, 
with the outcome of the vertex shader as input.

•	 Clipping: Once the primitive's vertices are in the so-called clipping space,  
it is easier and computationally cheaper to clip and discard the outer 
triangles here rather than in any other space.

•	 Perspective division: This operation converts our visualization volume  
(a truncated pyramid, usually called a frustum) into a regular and 
normalized cube.

•	 Viewport transform: The near plane of the clipping volume (the normalized 
cube) is translated and scaled to the viewport coordinates. This means that  
the coordinates will be mapped to our viewport (usually our screen or  
our window).

•	 Data is passed to the rasterizer: This is the stage that transforms our 
vectorial data (the primitive's vertices) to a discrete representation  
(the framebuffer) to be processed in further steps.

Fragment stages (per-fragment operations)
Here is where our vectorial data is transformed into discrete data, ready to be 
rasterized. The stages inside the superblock controls show that discrete data  
will finally be presented:

•	 Fragment shader: This is the stage where texture, colors, and lights are 
calculated, applied, and combined to form a fragment.

•	 Post fragment processing: This is the stage where blending, depth tests, 
scissor tests, alpha tests, and so on take place. Fragments are combined, 
tested, and discarded in this stage and the ones that finally pass, are  
written to the framebuffer.
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External stages
Outside the per-vertex and per-fragment big blocks lies the compute shader stage. 
This stage can be written to affect any other programmable part of the pipeline.

Differences between fixed and programmable 
designs
It is worth understanding the fixed pipeline, because the programmable pipeline  
is heavily based on it. Shaders only replace a few well defined modules that 
previously existed in a fixed way, so the concept of a "pipeline" has not actually 
changed very much.

In the case of the vertex shaders, they replace the whole transform and lighting 
module. Now we have to write a program that can perform equivalent tasks. Inside 
your vertex shader, you can perform the calculations that you would need for your 
purposes, but there is a minimum requirement. In order not to break the pipeline, the 
output of your shader must feed the input of the next module. You can achieve this 
by calculating the vertex position in clipping coordinates and writing it out for the 
next stage.

Regarding fragment shaders, they replace the fixed texture stages. In the past, this 
module cared about how a fragment was produced by combining textures in a very 
limited way. Currently, the final outcome of a fragment shader is a fragment. As 
implicitly said before, a fragment is a candidate to a pixel, so, in its most simple 
form, it is simply an RGBA color. To connect the fragment shader with the following 
pipeline's modules, you have to output that color, but you can compute it the way 
you want.

When your fragment shader produces a color, other data is also associated to 
it, mainly its raster position and depth, so further tests such as depth or scissor 
tests could go straight on. After all the fragments for a current raster position are 
processed, the color that remains is what is commonly called a pixel.

Optionally, you can specify two additional modules that did not exist in the fixed 
pipeline before:

•	 The geometry shader: This module is placed after the vertex shader, but 
before clipping happens. The responsibility of this module is to emit new 
primitives (not vertices!) based on the incoming ones.
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•	 The compute shader: This is a complementary module. In some way, this 
is quite different to the other shaders because it affects the whole pipeline 
globally. Its main purpose is to provide a method for generic GPGPU 
(General-Purpose computation on GPUs); not very graphics related. It is 
like OpenCL, but more handy for graphics programmers because it is fully 
integrated with the entire pipeline. As graphic usage examples, they could  
be used for image transforms or for deferred rendering in a more efficient 
way than OpenCL.

Types of shaders
Vertex and fragment shaders are the most important shaders in the whole pipeline, 
because they expose the pure basic functionality of the GPU. With vertex shaders, 
you can compute the geometry of the object that you are going to render as well 
as other important elements, such as the scene's camera, the projection, or how the 
geometry is clipped. With fragment shaders, you can control how your geometry 
will look onscreen: colors, lighting, textures, and so on.

As you can see, with only vertex and fragment shaders, you can control almost 
everything in your rendering process, but there is room for more improvement  
in the OpenGL machine.

Let's put an example: suppose that you process point primitives with a complex 
vertex shader. Using those processed vertices, you can use a geometry shader to 
create arbitrary shaped primitives (for instance, quads) using the points as the  
quad's center. Then you can use those quads for a particle system.

During that process you have saved bandwidth, because you have sent points 
instead of quads that have four times more vertices and processing power because, 
once you have transformed the points, the other four vertices already lie in the same 
space, so you transformed one vertex with a complex shader instead of four.

Unlike vertex and fragment shaders (it is mandatory to have one of each kind to 
complete the pipeline) the geometry shader is only optional. So, if you do not want 
to create a new geometry after the vertex shader execution, simply do not link a 
geometry shader in your application, and the results of the vertex shader will pass 
unchanged to the clipping stage, which is perfectly fine.

The compute shader stage was the latest addition to the pipeline. It is also optional, 
like the geometry shader, and is intended for generic computations.
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Inside the pipeline, some of the following shaders can exist: vertex shaders,  
fragment shaders, geometry shaders, tessellation shaders (meant to subdivide 
triangle meshes on the fly, but we are not covering them in this book), and compute 
shaders. OpenGL evolves every day, so don't be surprised if other shader classes 
appear and change the pipeline layout from time to time.

Before going deeper into the matter, there is an important concept that we have to 
speak about; the concept of a shader program. A shader program is nothing more 
than a working pipeline configuration. This means that at least a vertex shader and 
a fragment shader must have been compiled without errors, and linked together. As 
for geometry and compute shaders, they could form part of a program too, being 
compiled and linked together with the other two shaders into the same shader 
program.

Vertex shaders
In order to take your 3D model's coordinates and transform them to the clip space, 
we usually apply the model, view, and projection matrices to the vertices. Also, we 
can perform any other type of data transform, such as apply noise (from a texture or 
computed on the fly) to the positions for a pseudorandom displacement, calculate 
normals, calculate texture coordinates, calculate vertex colors, prepare the data for a 
normal mapping shader, and so on.

You can do a lot more with this shader; however, the most important aspect of it  
is to provide the vertex positions to clip coordinates, to take us to the next stage.

A vertex shader is a piece of code that is executed in the GPU processors, 
and it's executed once, and only once for each vertex you send to 
the graphics card. So, if you have a 3D model with 1000 vertices, the 
vertex shader will be executed 1000 times, so remember to keep your 
calculations always simple.

Fragment shaders
Fragment shaders are responsible for painting each primitive's area. The minimum 
task for a fragment shader is to output an RGBA color. You can calculate that color 
by any means: procedurally, from textures, or using vertex shader's output data.  
But in the end, you have to output at least a color to the framebuffer.
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The execution model of a fragment shader is like the vertex shader's one. A fragment 
shader is a piece of code that is executed once, and only once, per fragment. Let us 
elaborate on this a bit. Suppose that you have a screen with a size of 1.024 x 768. That 
screen contains 786.432 pixels. Now suppose you paint one quad that covers exactly 
the whole screen (also known as a full screen quad). This means that your fragment 
shader will be executed 786.432 times, but the reality is worse. What if you paint 
several full screen quads (something normal when doing post-processing shaders 
such as motion blur, glows, or screen space ambient occlusion), or simply many 
triangles that overlap on the screen? Each time you paint a triangle on the screen, 
all its area must be rasterized, so all the triangle's fragments must be calculated. In 
reality, a fragment shader is executed millions of times. Optimization in a fragment 
shader is more critical than in the vertex shaders.

Geometry shaders
The geometry shader's stage is responsible for the creation of new rendering 
primitives parting from the output of the vertex shader. A geometry shader is 
executed once per primitive, which is, in the worst case (when it is used to emit point 
primitives), the same as the vertex shader. The best case scenario is when it is used to 
emit triangles, because only then will it be executed three times less than the vertex 
shader, but this complexity is relative. Although the geometry shader's execution 
could be cheap, it always increases the scene's complexity, and that always translates 
into more computational time spent by the GPU to render the scene.

Compute shaders
This special kind of shader does not relate directly to a particular part of the pipeline. 
They can be written to affect vertex, fragment, or geometry shaders.

As compute shaders lie in some manner outside the pipeline, they do not have the 
same constraints as the other kind of shaders. This makes them ideal for generic 
computations. Compute shaders are less specific, but have the advantage of having 
access to all functions (matrix, advanced texture functions, and so on) and data 
types (vectors, matrices, all texture formats, and vertex buffers) that exist in 
GLSL, while other GPGPU solutions, such as OpenCL or CUDA have their own 
specific data types and do not fit easily with the rendering pipeline.
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GPU, a vectorial and parallel architecture
GPUs provide an incredible processing power in certain situations. If you ever 
tried to program a software rasterizer for your CPU, you would have noticed that 
the performance was terrible. Even the most advanced software rasterizer, taking 
advantage of vectorial instruction sets such as SSE3, or making intensive use of all 
available cores through multithreading, offers very poor performance compared 
with a GPU. CPUs are simply not meant for pixels.

So, why are GPUs so fast at processing fragments, pixels, and vertices compared 
to a CPU? The answer is that by the scalar nature of a CPU, it always process one 
instruction after another. On the other side, GPUs process hundreds of instructions 
simultaneously. A CPU has few (or only one) big multipurpose cores that can 
execute one shader's instance at once, but a GPU has dozens or hundreds of small 
and very specific cores that execute many shaders' instances in parallel.

Another great advantage of GPU over CPU is that all native types are vectorial. 
Imagine a typical CPU structure for a vector of floats:

struct Vector3
{
  float x, y, z;
};

Now suppose that you want to calculate the cross product of two vectors:

vec3 a;
vec3 b = {1, 2, 3};
vec3 c = {1, 1, 1};
// a = cross(b, c);
a.x = (b.y * c.z) – (b.z * c.y);
a.y = (b.z * c.x) – (b.x * c.z);
a.z = (b.x * c.y) – (b.y * c.x);

As you can see, this simple scalar operation in CPU took six multiplications, three 
subtractions, and three assignments; whereas in a GPU, vectorial types are native. 
A vec3 type is like a float or an int for a CPU. Also native types' operations are 
native too.

vec3 b = vec3(1, 2, 3);
vec3 c = vec3(1, 1, 1);
vec3 a = cross(b, c);
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And that is all. The cross product operation is done in a single and atomic operation. 
This is a pretty simple example, but now think in the number of operations of these 
kinds that are done to process vertices and fragments per second and how a CPU 
would handle that. The number of multiplications and additions involved in a  
4 x 4 matrix multiplication is quite large, while in GPU, it's only a matter of one  
single operation.

In a GPU, there are many other built-in operations (directly native or based  
on native operations) for native types: addition, subtraction, dot products, and 
inner/outer multiplications, geometric, trigonometric, or exponential functions.  
All these built-in operations are mapped directly (totally or partially) into the 
graphics hardware and therefore, all of them cost only a small fraction of the  
CPU equivalents.

All shader computations rely heavily on linear algebra calculations, mostly used 
to compute things such as light vectors, surface normals, displacement vectors, 
refractions and diffractions, cube maps, and so on. All these computations and  
many more are vector-based, so it is easy to see why a GPU has great advantages 
over a CPU to perform these tasks.

The following are the reasons why GPUs are faster than CPUs for vectorial 
calculations and graphics computations:

•	 Many shaders can be executed at the same time
•	 Inside a shader, many instructions can be executed in a block

The shader environment
Other applications that you might have coded in the past are built to run inside 
a CPU. This means that you have used a compiler that took your program 
(programmed in your favorite high-level programming language) and compiled it 
down into a representation that a CPU could understand. It does not matter if the 
programming language is compiled or interpreted, because in the end, all programs 
are translated to something the CPU can deal with.

Shaders are a little different because they are meant only for graphics, so they are 
closely related to the following two points:

•	 First, they need a graphics card, because inside the graphics card lies the 
processor that will run them. This special kind of processor is called the  
GPU (Graphics Processing Unit).

•	 A piece of software to reach the GPU: the GPU driver.
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If you are going to program shaders, the first thing that you have to do is 
prepare your development environment, and that starts by downloading, 
and always keeping your graphics card driver updated.

Now suppose you are ready to start and have your first shader finished. You should 
compile and pass it to the GPU for execution. As GLSL relies on OpenGL, you must 
use OpenGL to compile and execute the shader. OpenGL has specific API calls for 
shader compilation: link, execution, and debug. Your OpenGL application now acts 
as a host application, from where you can manage your shaders and the resources 
that they might need, like for instance: textures, vertices, normals, framebuffers, or 
rendering states.

Summary
In this chapter, we learnt that there exists other worlds beyond the CPUs: GPUs and 
parallel computation. We also learnt how the internals of a graphics rendering pipeline 
are, which parts is it composed of, and a brief understanding of their functions.

In the next chapter, we will face the details of the language that controls the pipeline; 
a bit of grammar, and a bit of syntax.



GLSL Basics
OpenGL Shading Language is based on ANSI C. Many features of the C 
programming language have been incorporated to GLSL, while the ones  
that go against performance or language simplicity have been removed.

All GLSL shader types (vertex, fragment, geometry, and compute) use the same 
language, so you will benefit a lot from this chapter. All you will learn in this chapter 
will serve for every following chapter. In this chapter you will learn the basics of the 
language and the common elements between each shader type. Specifically, we will 
talk about the following topics:

•	 Language basics
•	 Shader input/ouput variables

Because GLSL is very close to the C language, I won't expose a complete and 
exhaustive list of each language element. I'll focus only on the differences between 
GLSL and C, and the biggest difference of them all, which will definitely lighten up  
a lot of readers, is that GLSL does not have pointers.

The Language
When you start coding a shader, you have to keep in mind one important 
thing: which GLSL version you are going to code for. This is usually a minimum 
requirements decision for your application. GLSL version is always bound to a  
specific OpenGL version, so in order to choose a GLSL version that supports the 
features we need, we are also tied to the minimum OpenGL version that supports 
that GLSL version.

At the moment of writing this book, I had to decide which version of GLSL to  
use. As we will talk about the compute shaders, we need to go to the minimum 
version that support them in a native way (not through extensions), and that's  
GLSL Version 4.30.6.



GLSL Basics

[ 18 ]

The official GLSL specification could be a good reference resource, once you have 
finished reading this book. You will be able to find the full list of functions in the 
tables located in the specification. The 4.30.6 GLSL specification can be downloaded 
directly from the OpenGL official site: https://www.opengl.org/registry/doc/
GLSLangSpec.4.30.8.pdf.

Also, I'll focus only on the GLSL Core Profile, Forward Compatible. This is the cleanest 
way for someone who is new to GLSL; Core Profile, Forward Compatible ensures 
that deprecated elements won't be available for the programmer. There are OpenGL 
mechanisms such as display lists or the immediate drawing mode that are discouraged 
to use, but still remain in the language. Core Profile, Forward Compatible prevents 
their use by producing compilation or runtime errors if they are used.

Language basics
Before we begin, I expect you to have a basic understanding and proficiency of C. 
OpenGL is available in different programming languages such as Java, Python,  
or C#. However, I will be concentrating on the C/GLSL concepts.

Instructions
The instructions always end with a semicolon, and there could be more than  
one per line:

c = cross(a, b);
vec4 g; g = vec4(1, 0, 1, 1);

A block of instructions is created by putting them in brackets. All variables declared 
inside a block will be destroyed when the block finishes. If two variables have the 
same name—one declared outside the block (also called scope) and another declared 
inside the block—by default, the inner variable is the one which will be referenced:

float a = 1.0;
float b = 2.0;
{
  float a = 4.0;
  float c = a + 1.0; // c -> 4.0 + 1.0
}
b = b + c; // wrong statement. Variable c does not exist here

Tabulations or whitespaces don't change the semantics of the language. You can use 
them to format the code at your wish.
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Basic types
GLSL is very rich regarding its basic types. In addition to standard C types, some 
others—mainly to represent vectors or expose the internal GPU architecture—have 
been added.

The following is the complete basic types list:

•	 bool: This can only have two possible values—true or false
•	 int: The two types of int are as follows:

°° int (normal integer value)
°° uint (unsigned integer value)

•	 sampler (types that represent textures):
°° sampler1D, sampler2D, sampler3D

•	 float

•	 Vectors:
°° bvec2, bvec3, bvec4 (vectors of 2, 3, and 4 Boolean elements)
°° ivec2, ivec3, ivec3 (vectors of 2, 3, and 4 integer elements)
°° uvec2, uvec3, uvec4 (vectors of 2, 3, and 4 unsigned integers)
°° vec2, vec3, vec4 (vectors of 2, 3, and 4 floats, single precision)
°° dvec2, dvec3, dvec4 (vectors of 2, 3, and 4 floats, and  

double precision)

•	 Matrices: Matrices are always made of floating point numbers (the d prefix 
stands for double precision):

°° mat2, mat3, mat4 (2 x 2, 3 x 3, and 4 x 4 matrices)
°° dmat2, dmat3, dmat4 (2 x 2, 3 x 3, and 4 x 4 matrices)
°° mat2x3, mat2x4, mat3x2, mat3x4, mat4x2, mat4x3 (first number 

refers to columns and second to rows)
°° dmat2x3, dmat2x4, dmat3x2, dmat3x4, dmat4x2, dmat4x3  

(first number refers to columns, second to rows)
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On the contrary to C/C++, when writing float literals, if you don't put the 
suffix f, the compiler understands that the literal is float. To specifically 
write a double-precision literal, you must use the suffix lf or lF:

•	 1.5: float, single precision
•	 1.3945958: float, single precision
•	 1.903945f: float, single precision
•	 1.3904859045F: float, single precision
•	 1.5lF: double precision
•	 1.34095043lf: double precision

Variable initializers
To initialize or assign a value to a variable, you must use the constructor of the  
type to the variable. Let's see some examples:

float a = 1.0; 
bool switch = false;  // Ok
ivec3 a = ivec3(1, 2, 3);  // Ok
uvec2 a = uvec2(-1, 2);  // Error, uivec2 is unsigned
vec3 a(1.0, 2.0);  // Error, you must assign the constructor
vec3 a = vec3(1.0, 2.0);  // Ok

A very useful trick about vector initialization is that there are a lot of constructors 
available. For example, you can construct vec4 from vec3 and float, or two vec2, 
or float and vec3. All possible combinations of elements that, in the end, fit in size 
with the target constructor are available:

vec4 a = vec4(1.0, vec3(0.0, 1.0, 0.0));
vec4 a = vec4(vec3(0.0, 1.0, 0.0), 0.9);
vec4 a = vec4(vec2(1.0, 1.0), vec2(0.5, 0.5));

A vector can be seen as structures or arrays. The structure's fields of a vector are 
predefined by the language, and the array sizes are the expected just looking at  
the type name (the size of vec3 is 3).

For vectors, the following are the valid names for the structure's fields (the three 
groups are synonymous):

•	 {x, y, z, w} useful when accessing vectors that represent positions
•	 {r, g, b, a} useful when accessing vectors that represent colors
•	 {s, t, p, q} useful when accessing vectors that represent texture coordinates
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Also, you can index the vectors using subscripts:

vec2 p;
p[0] = 1.0; // ok
p.x = 1.0; // Ok
p.y = 2.0; // Ok
p.z = 3.0; // Illegal, p is a vec2, only has 2 elements

GLSL allows you to swizzle the components of a vector (that is, construct a new 
vector by duplicating or reordering the elements of the former). To make this 
possible, GLSL allows things so useful like the next ones:

vec4 color1 = vec4(0.5, 0.2, 1.0, 1.0); // RGBA color;

// Let's convert color to abgr
vec4 color2 = color1.abgr; // equivalent to color1.wzyx

// Let's make a grey color based only on the red component
vec4 redGray = color1.rrrr;
float red = color1.r;

// Let's swizzle randomly but in valid way
vec4 color3 = color1.gbgb;
Vec4 color4 = vec4(color1.rr, color2.bb); // .rr .bb are vec2
Vec4 color5 = color1.tptp; // the same than .gbgb
vec4 color6 = color1.yzyz; // the same than .gbgb and .tptp
color6.xy = vec2(1.0, 0.0);
color6[3] = 2.0;

// Some invalid swizzles
vec2 p;
p = color1.rgb; // .rgb is vec3
p.xyz = color.rgb; // .xyz doesn't match p's size
p[2] = 3.0; // index out of bounds.
vec4 color7 = color1.xxqq; // Ilegal, components don't come from the 
same set

Talking about matrices, they follow the same rules as compared to vectors, except 
the fact that a matrix is an array of column vectors and GLSL matrices are column 
matrices. This means that the first subscript is the column index and the second 
subscript is the row index:

mat4 m;
m[0] = vec4(1.0); // put the first column to 1.0 in each element
m[1][1] = 2.0; // put the second diagonal element to 2.0
m[2] = color3.xxyy; // Insert a swizzled vector into the third column
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Vector and matrix operations
By default, the vector and matrix operations and some arithmetic operators 
have been overloaded in order to match linear algebraic conventions. Almost all 
operations are component-wise, but multiplications of matrix by matrix and matrix 
by vector follows the rules of the linear algebraic transforms:

mat3 R, T, M;
vec3 v, b;
float f;
// Initialize f, b, v, R and T with some values
// …

// Component wise example
b = v + f;
/* this stands for:
b.x = v.x + f;
b.y = v.y + f;
b.z = v.z + f;
The same is applied with the product operator, even between two vector 
types */

// Linear algebra transform
// Vectors are considered column vectors
b = T * v;
/* Is equivalent to:
b.x = T[0].x * v.x + T[1].x * v.y + T[2].x * v.z;
b.y = T[0].y * v.x + T[1].y * v.y + T[2].y * v.z;
b.z = T[0].z * v.x + T[1].z * v.y + T[2].z * v.z; */

M = T * R;
/* Too long for putting that operation here, but it follows the rules 
of column matrices*/

Summarizing, and talking about transform matrices, if you want to transform a 
vector with a transform matrix, just post-multiply it. If you want to concatenate 
transforms, just write them naturally from right to left:

b = T * v; // Translate v with the translation matrix T
b = R * T * v; // Translate and then rotate vector v
vertex = projection * modelview * vertex_position; 

/* Transform a vertex position from model coordinates to clip 
coordinate system. This is the way we always will go from model space 
to clip space.*/
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Castings and conversions
You can only cast types to other types when there won't be precision issues in the 
process, but other types of casts must be done explicitly. For example, you can cast 
implicitly from int to uint, from int to float, from float to double, and so on.

Otherwise, you must perform casts explicitly or you will end up with compilation 
errors. Explicit casting is done through a constructor. For example:

float threshold = 0.5;
int a = int(threshold); // decimal part is dropped, so a = 0;
double value = 0.334lf
float value2 = float(value);
bool c = false;
value2 = float(c); // value2 = 0.0;
c = true;
value2 = float(c); // value2 = 1.0;

In general, if you have problems with implicit castings, switch to the explicit way  
(or better, always do explicit conversions).

Code comments
Code comments are useful for making annotations in the code to clarify some 
operations for further readings. It isn't unusual to find coding a bit too tedious if you 
take a break from it for a while. Under such scenarios, it is always better to include 
comments for referencing later. There are two code comments styles: single-line 
comments or block of lines comments:

// This is a single-line comment. This line will be ignored by the 
compiler

/* This is a block of lines comment. It's initialized
   with a slash and an asterisk and ends with an asterisk
   and slash. Inside this block you can put anything, but
   be careful because these kind of comments can't be nested */

Flow control
Just as with almost all other programming languages, you can control the flow of 
your code by checking Boolean conditions:

if(a > threshold)
  ligthColor = vec4(1.0, 1.0, 1.0, 1.0); //single new line, no  
  matter the indentation
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Alternatively, place the next code statement in the same line:

if(a > threshold) lightColor = vec4(1.0, 1.0, 1.0, 1.0);

You can also use the else statement to perform actions when the if condition is  
not true:

if(a > threshold)
  lightColor = vec4(1.0, 1.0, 1.0, 1.0);
else
  lightColor = vec4(1.0, 0.0, 0.0, 1.0); // when a <= threshold

The last variant is for when you want to test some conditions using the same range, 
for example, when using one or more else if statements:

if(a < threshold)
  lightColor = vec4(1.0, 0.0, 0.0, 1.0);
else if(a == threshold)
  lightColor = vec4(0.0, 1.0, 0.0, 1.0);
else if((a > threshold + 1) && (a <= threshold + 2))
  lightColor = vec4(0.0, 0.0, 1.0, 1.0);
else
  lightColor = vec4(1.0, 1.0, 1.0, 1.0);

The C-like languages are not indentation based, such as Python for example. If you 
want to specify more than one instruction, you have to explicitly use blocks:

if(a > threshold)
{
  lightColor = vec4(1.0, 1.0, 1.0, 1.0);
  baseColor = vec4(1.0, 0.0, 0.0, 1.0);
}

Of course, you can nest conditionals as in any other programming language. In GLSL, 
it is perfectly fine and legal (but bad for performance, as conditionals always are):

if(a > threshold1)
{
    if(b > threshold2)
    {
      LightColor = vec4(1.0, 0.0, 0.0, 1.0);
    }
  lightColor = vec4(0.0, 1.0, 0.0, 1.0);
}
else
  lightColor = vec4(0.0, 0.0, 0.0, 1.0);
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When you need to check different possibilities of a single variable's value, you could 
use the switch-case statement:

switch(myVariable)
{
  case 1: // when myVariable's value is 1
    lightColor = vec4(1.0, 0.0, 0.0, 1.0);
    break;
  case 2: // when myVariable's value is 2
    lightColor = vec4(0.0, 1.0, 0.0, 1.0);
    break;
  case 3: // when myVariable's value is 3
    lightColor = vec4(0.0, 0.0, 1.0, 1.0);
    break;
  default: // in any other case.
    lightColor = vec4(1.0, 1.0, 1.0, 1.0);
}

There are a few things to explain here. First, you must have noticed the break 
statement. You have to put it there to separate the cases. If you don't, and suppose 
case 2 has no break statement, code execution will continue into case 3.

Don't forget to put breaks wherever necessary.

I also have put the default clause there. This clause is where the code will be 
when all the other cases fail. In this example, if the value of myVariable is 4, 5, or 
42342344, the code will enter in the default clause. This clause is optional, so you 
don't have to put it there if you don't need it.

A switch-case statement is equivalent to a chain of if-else if statements; but if 
you can, use the switch statement instead of if-else.

switch statement if-else statement
switch(a)
{
  case 1:
    offset = offset + 1.3;
    offset2 = offset;
    break;
  case 2:
    offset = offset + 3.4;
    break;
  default:
    offset = 0;
}

if(a == 1)
{
  offset = offset + 1.3;
  offset2 = offset;
}
else if(a == 2)
  offset = offset + 3.4;
else
  offset = 0;
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Loops
In GLSL, we have the three most commonly used loops in programming, for, while, 
and do while.

The for loop is the most common one. It has three blocks, and all of them are 
optional—initialization, finalization condition check, and the increment counter 
block—and all of them are separated with semicolons:

for(initialization; check-condition; increment)

The instructions of the loop could be a single instruction or a block of instructions 
(this will apply to the other loops):

for(float i = 0.0; i < 10.0; i = i + 1.0)
{
  myVariable = myVariable + i * 1.3;
}

This loop will repeat ten times. Firstly, the variable i is created and initialized. Then, 
once the condition is checked, the for body is executed and i is incremented. This is 
repeated until the value of i is 9, because i will be increased in the next check.

Finally, the condition will fail when i is larger than or equal to 10.0, terminating the 
execution of the loop.

The while loop is somehow simpler than the for loop. It checks a condition, and if 
that condition is true, it executes the loop's body; if not, the loop ends:

float i = 0.0;
while(i < 10.0)
{
  myVariable = myVariable + i * 1.3;
  i = i + 1.0;
}

The condition check is executed before the loop's body. This is done to 
avoid the body's execution when the condition is initially false.



Chapter 2

[ 27 ]

The last loop provided by GLSL is do-while. It's very similar to the while loop,  
but with a big difference: the condition is executed after the loop's body:

float i = 0.0;
do
{
  myVariable = myVarialble + i * 1.3;
  j = j + 1.0;
}while(i < 10.0f)

Because the condition is tested after the loop's body is executed, 
it will be executed always at least once.

Remember, this loop isn't equivalent at all to the while loop. Use it only when you 
explicitly need the loop's body to be executed at least once.

Structures
Ok, at this point we have some useful variable types—int, float, and so on—but 
those are plain numerical representations. What if we have to represent something 
from the real world with a variable? We need to create a new variable type that 
contains in some manner the properties of the object we want to represent. For  
that purpose we have structures.

A structure is simply a collection of other types under a custom name. For example, 
we can say that a surface material (for our purposes) is composed of a base texture 
color, roughness coefficient, and a tint color, so let's define that new type:

struct MySurface
{
  vec3 baseTextureColor; // RGB color
  float roughness;
  vec3 tint;  // RGB Color
};

Notice the trailing semicolon after the closing bracket; it's 
mandatory by the language's syntax.
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Inside a structure declaration, you can put any existing type, or even other custom 
structures. Now, in order to use this new type, we only have to declare a variable of 
this new type:

MySurface tableSurface;

And, to access individual elements, just put the variable name, a dot, and the field 
name you want access to:

tableSurface.roughness = 2.0;

You can also initialize the whole structure in one step:

MySurface surface = MySurface(vec3(1.0, 1.0, 1.0), 0.5, vec3(1.0,  
  0.0, 0.0));

Just remember, place the initialization field's values in the same order of the 
structure declaration.

Arrays
Now, what if you need to treat many variables of the same type in a generic way? 
You can arrange them in an array and use the same name for all of them, but 
accessing individual elements with an index.

To do this, just declare the variable and put the number (it has to be a number that 
can be resolved at compile time) of instances inside square brackets:

float coefficient[4];
MySurface surfaces[3];
for(float i = 0; i < 4; i = i + 1.0)
{
/* Be careful with the index. If it becomes larger than the declared 
number of instances, it will make the shader crash at runtime */
  coefficient[i] = i * 2.0;
}

for(float i = 0; i < 3; i = i + 1.0)
{
  surfaces[i].roughness = i * + 1.2;
}
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Arrays and vectors also have the useful property .length(), which returns the 
number of elements of the array:

for(int i = 0; i < coefficient.length(); ++i)
{
  // Do whatever
}

Also, you can statically initialize an array directly in the declaration:

float myArray[] = {1.0, 2.0, 3.0, 4.0};
vec2 myArray2[] = {vec2(0.0, 0.0), vec2(1.0,0.0), vec2(1.0, 1.0)};

Functions
Now you have the basic language structures to build a simple program. In fact, 
you have everything you would need, but when a program reaches a certain size, 
it's always useful to break it into functional parts. Sometimes, you will break the 
program to reuse code and avoid repeating it everywhere if it's a common operation 
or for code clarity and readability.

Let's put a simple example, just to show the features that I want to show:

// Structure declaration, to use as sample
struct Light
{
  vec3 position;
  vec3 diffuseColor;
  vec3 attenuation;
};

// Shader entry point, just like in C, but no input params
void main()
{
  vec3 myPosition = vec3(1.0, 0.0, 0.0);

  // Let's create and initialize some ligths
  Light light1 = Light(vec3(10.0, 0.0, 0.0), vec3(1.0, 0.0, 0.0),  
    vec3(1.0, 2.0, 3.0));
  Light light2 = Light(vec3(0.0, 10.0, 0.0), vec3(1.0, 0.0, 0.0) ,  
    vec3(1.0, 2.0, 3.0));
  Light light3 = Light(vec3(0.0, 0.0, 10.0), vec3(1.0, 0.0, 0.0) ,  
    vec3(1.0, 2.0, 3.0));
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// Calculate simplified light contribution and add to final color
  vec3 finalColor = vec3(0.0, 0.0, 0.0);
  //distance is a GLSL built-in function
  float distance1 = distance(myPosition, light1.position);
  float attenuation1 = 1.0 / (light1.attenuation[0] + light1. 
    attenuation[1] * distance1 + light1.attenuation[2] *  
    distance1 * distance1);
  finalColor += light1.diffuseColor * light1.attenuation;

  // Let's calculate the same, for light2
  float distance2 = distance(myPosition, light2.position);
  float attenuation2 = 1.0 / (light2.attenuation[0] + light2. 
    attenuation[1] * distance2 + light2.attenuation[2] *  
    distance2 * distance2);
  finalColor += light2.diffuseColor * light2.attenuation;

  // Light 3
  float distance3 = distance(myPosition, light3.position);
  float attenuation3 = 1.0 / (light3.attenuation[0] + light3. 
    attenuation[1] * distance3 + light3.attenuation[2] * distance3 *  
    distance3);
  finalColor += light3.diffuseColor * light3.attenuation;

  // Now finalColor stores our desired color
}

As you can see, I repeated the same operations three times, once per light; this is a 
bad idea. It is very error-prone, and hardly debuggeable, and if you continue this 
way, your shaders will be bloated with repetitive code. The point here is to use a 
function to calculate the light contribution in a desired point and add that value to 
the final color, which I'll show you in the next example:

struct Light
{
  vec3 position;
  vec3 diffuseColor;
vec3 attenuation;
};

vec3 CalculateContribution(const in Light light, const in vec3 
position)
{
float distance = distance(position, light.position);
  float attenuation = 1.0 / (light.attenuation[0] + light. 
    attenuation[1] * distance + light.attenuation[2] * distance *  
    distance);
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  return light.diffuseColor * light.attenuation;
}
// Shader entry point, just like in C, but no input params
void main()
{
  vec3 myPosition = vec3(1.0, 0.0, 0.0);
  Light light1 = Light(vec3(10.0, 0.0, 0.0), vec3(1.0, 0.0, 0.0) ,  
    vec3(1.0, 2.0, 3.0));

  Light light2 = Light(vec3(0.0, 10.0, 0.0), vec3(1.0, 0.0, 0.0) ,  
    vec3(1.0, 2.0, 3.0));
  Light light3 = Light(vec3(0.0, 0.0, 10.0), vec3(1.0, 0.0, 0.0) ,  
    vec3(1.0, 2.0, 3.0));

  // Calculate light1
  vec3 finalColor = CalculateContribution(light1, myPosition);
  // Calculate light2
  finalColor += CalculateContribution(light2, myPosition);
  // Calculate light3
  finalColor += CalculateContribution(light3, myPosition);
}

As you can see, the code is now much more readable, and if you have an error in the 
light's formula, you only have to fix it in one place.

Now, let's go into more detail with function usage and creation. First of all, a 
function must be defined or declared before you can use it. If not, you will get a 
compile-time error. You can achieve this by simply putting the function before the 
point where you will use it, or putting its definition (the prototype) before the use 
point and declare it later.

The following is the function prototype:

vec3 CalculateContribution(const in Light light, const in vec3  
  position);

As usual in C, the first keyword is the return type, and in this case, this function 
returns vec3. If you aren't going to return any value, you must use void instead.

This function receives a Light type variable and a vec3 variable as input. The 
keyword const means that the variable will not be modified inside the function. The 
keyword in means that after the function call, the variable will remain unchanged, 
no matter what you did inside the function. The keyword out means that the 
variable will only be copied out but not copied in, and the keyword inout means 
that the variable will be copied in and copied out by the function.
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The out variables are not initialized when passed in a function.

Of course, the const qualifier doesn't have meaning with the out or inout qualifiers, 
so you can't use that combination.

By default, if no in/out/inout qualifiers are specified, in is the one which is 
implicitly used.

GLSL does not provide pointers. You must use the in/out/inout 
qualifiers to pass variables by value or by reference to functions.

Preprocessor
Like in C, GLSL has a preprocessor. The preprocessor is a precompilation step over 
the shader's source code (prior to the compilation step that transforms the GLSL 
program into machine code) that executes simple string substitution, among other 
things such as reading compilation directives. Basically, it scans the code looking for 
some tags that will be evaluated and replaced by real values.

All preprocessor tags start with the character # (hashtag), and the most important 
ones are:

•	 #error

•	 #version

•	 #pragma

•	 #define

•	 #if, #ifdef, #ifndef, #else, #elif, #endif

The #error directive will display the message that is next to the keyword in 
the shader's compilation log, and will also produce a compilation error. If the 
preprocessor reaches an #error directive, the shader will be considered ill-formed 
and not executable:

#ifndef DEG2RAD
  #error missing conversion macro
#endif

The #version directive is meant to force the compiler to stick to a certain GLSL 
version. It has to be placed in the first line of the shader.
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This is very useful because it ensures better compatibility. If you want to use only  
the feature set of a certain GLSL version (for example, to avoid deprecated things  
in your shader code), this is critical because the compiler will throw you an error 
when it detects that you are using newer or older GLSL features than the version  
you actually have specified.

In all of our shaders, our first line will be #version 430.

The #pragma directive is meant to provide some information to the GLSL compiler. 
With this directive, you can put the shader in debug/release mode (#pragma 
debug(on), #pragma debug(off)) or turn on or off optimizations (#pragma 
optimize(on), #pragma optimize(off). By default, the pragma optimization is 
enabled while debug is turned off.

I suggest using debug (on) pragma always because this way we will have more 
information from the compiler when errors occur. Also, optimize (off) pragma 
is very useful when debugging, because the compiler, from time to time, makes 
mistakes optimizing the code, and you could spend hours or days debugging a 
problem that is not your fault. Enable optimization for production environments  
and check that it works exactly like the non-optimized version (but faster!).

The #define directive defines a preprocessor symbol, optionally assigning it a value. 
Fake parameters could be used to create pseudo functions (macros). The #undef 
directive removes that symbol from the list of defined preprocessor symbols.

The #if and #endif directives enables or disables code. If the condition of the #if 
directive is true, the code between #if and #endif is compiled. If it's false, the  
code between #if and #endif is removed from the source code, and therefore  
not compiled.

As with normal programming language ifs, we have else (#else), else if (#elif), 
and the closing directive (#endif), needed because we don't use brackets here.

The #ifdef directive is a little special, because it doesn't check a Boolean expression. 
It checks if the preprocessor symbol that is next to #ifdef has been declared or not 
(#ifndef checks if the symbol has not been declared).

Some examples will clarify the usage. Let's make a generic shader function:

// Let's ensure we run the GLSL version 4.30
#version 430
#pragma debug(on)
#pragma optimize(off)
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// Let's define PI, but first, if it were defined, we will undefined 
it, to use a new value
#ifdef PI
#undef PI
#endif
#define PI 3.141592

/* define a macro to convert degrees to radians. Notice that we
  are using the previously defined PI macro. Comment out or uncomment 
the next line to see the effect of #ifdef few lines below */
#define DEG2RAD(x) ((x) * PI / 180.0)

// a sample macro
#define NUMBER_OF_TEXTURES 2

void main()
{
  float degrees = 45.0;
  /* if the DEG2RAD macro exists, we will use it, if not, we
   will calculate the radians by our means */
  #ifdef DEG2RAD
  float cosine2 = cos(DEG2RAD(degrees));  
  #else
    float cosine = cos(degrees * PI / 180.0);
  #endif

  // Just to show how #if works… nothing to explain.
  vec4 color;
  #if NUMBER_OF TEXTURES == 2
    color = ReadTextureColor(2);
    color += ReadTextureColor(1);
  #elif NUMBER_OF_TEXTURES == 1
    color = ReadTextureColor(1);
  #elif NUMBER_OF_TEXTURES == 0
    color = vec4(0.0, 0.0, 0.0, 1.0);
  #else
  // We'd detected an error! let's stop the compilation here.
  #error Unsupported number of textures
  #endif
}
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Once the preprocessor has done its work, the code that will be compiled in the next 
stage will be the following:

#version 430
#pragma debug(on)
#pragma optimize(off)

void main()
{
   float degrees = 45.0;
   float cosine2 = cos(((degrees) * 3.141592 / 180.0));	

   vec4 color;
   color = ReadTextureColor(2);
   color += ReadTextureColor(1);
}

Shader input and output variables
Until now, we've been speaking about the language itself; how it's similar to the  
C programming language, but focusing specially on the differences. That was only 
the language part. Now it's time to see some of the functional parts of GLSL and 
cover an important topic: the inputs and outputs of the shaders.

Uniform variables
Suppose, you want to create a shader that makes use of a simple light. Well, shaders 
don't know about lights or any other high-level concept. Shaders only know about 
math and programming. So, if the language doesn't have support for lights, how 
would I use the light's position or color in a shader?

You need to pass those variables from your application to your shader and perform 
the lighting calculations inside the shader.

A parameter that is passed from the application to the shaders is called a uniform 
variable. Those variables are always read-only (constant), global to the shaders that 
form the current executable program.

The procedure is the following: first, set up the uniform's value, draw some triangles, 
change the variable (if desired), draw other triangles, and repeat this process until 
you're finished with your rendering.
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As a quick note, this is how you'd set the uniform variable's values in the host 
program (the following lines of code are C and OpenGL, not GLSL).

Once your shader has been compiled, linked, and activated, you need to find the 
variable's index (location):

// C code to initialize a Uniform variable.
// programID = OpenGL program id, "lightPosition" = name of the 
variable inside the shader. It's case sensitive, so be careful
int location = glGetUniformLocation(programID, "lightPosition");

// Let's create a dummy position, an array of 3
float myLight1Position[] = {0, 10.0f, 0};

// Set the values into the uniform's slot
glUniform3fv(location, myLight1Position);

With this, we have filled the uniform variable with the valid values. Now let's go to 
the shader's part:

If you do not give a value to a variable before the shader is used, the 
variable's value is undefined.

#version 430
#pragma debug(on)
#pragma optimize(off)

uniform vec3 lightPosition;
void main()
{
  // Do your calculations here with lightPosition
}

You can pass whatever you want as a uniform variable: single integers, matrices, 
structures, or even arrays of structures.

Other input variables
There are other types of input variables, and all of them are meant to connect 
between different pipeline stages. Each has a purpose, and their usage differs 
depending on where they are going to be used. Let's see how to define them  
using an example, but this would be covered in depth in corresponding chapters.
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The input variables are global variables, like the uniforms are, and must be declared 
globally in the shader with the keyword in.

There are several qualifiers, mostly related with precision, interpolation modes, 
or for other shader-type-specific matters. But to keep things simple, we won't care 
about those qualifiers right now. I'll use a fragment shader as an example:

#version 430
// Don't care about smooth keyword right now.
in smooth vec3 vertexColor;

// Color that will be written into the framebuffer
out vec4 frameBufferColor;
void main()
{
  frameBufferColor = vec4(vertexColor, 1.0);
}

In the last shader (which is a basic fragment shader actually), vertexColor is an 
input variable that holds a vertex interpolated color that was previously an output 
from a vertex shader.

Shader output variables
Every shader is meant to perform work, and always the result of that work must be 
in the form of an output. In the case of a fragment shader, the output is at least the 
color of a fragment. In the case of a vertex shader, the output is at least the vertex 
position in clip coordinates, and usually some other vertex attributes that will be 
interpolated and passed to the fragment shader.

Besides, all qualifiers that GLSL provides for those kinds of variables, the important 
keyword here is out. As with the input variables, the output variables must be 
declared globally. In the case of fragment shaders, the semantics of out means that the 
variable will contain (in most cases) the color that will be drawn in the framebuffer.

A fragment shader could output other things besides the color, such 
as the fragment's depth or separated colors for multiple framebuffers 
simultaneously, but we will talk mostly about single colors as fragment 
shader output.
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Summary
We have learned about all the tools that we need to start reading about specific 
shaders. Although, this chapter contains plenty of new definitions and concepts,  
it contains the minimum (but solid) base to start developing shaders.

We learned about language grammar, key C-GLSL differences, basic language 
structures, shaders' native vectorial types and operations, and shaders' inputs  
and outputs. Now, in the next chapter, we will face our first true challenge:  
vertex shaders.



Vertex Shaders
Vertex shaders are responsible for transforming the incoming geometry into something 
suitable to be rasterized, according to the rendering pipeline laws. In order to make 
this work, a vertex shader's inputs and outputs must be very well defined.

In this chapter we will see how the inputs must be prepared and how we can 
compute the outputs. Also, we will talk extensively about the operations we  
are allowed to perform.

A vertex shader executes once and only once for each vertex sent to the GPU. Inside 
a vertex shader, you have access to all information about that vertex, but you can't 
access the other sibling vertices of the primitive that is being processed.

It doesn't matter for the vertex shader which type of primitive and how you had 
arranged it before sending it to the GPU (indexed, non-indexed, interleaved,  
non-interleaved, VBO, VAO, and so on).

So, in the end, a vertex shader is a "give me one vertex that I'll transform for you" 
machine, and nothing else. Things have been kept simple as you can see.

We will finish this chapter with an example where we'll talk about possible problems, 
solutions, and debugging techniques when you don't get the expected results.

Vertex shader inputs
A vertex shader can have only two different kinds of inputs: vertex attributes  
and uniform variables.
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Vertex attributes
A vertex attribute is simply the information you pass to the shader, in a per-vertex 
basis, along the plain vertex position in the world. Examples of vertex attributes 
could be: 

•	 Texture coordinates
•	 Normals
•	 Tangents
•	 Per-vertex colors

Because of the evolving nature of OpenGL, version after version, details tend to be 
generalized. OpenGL specification writers try to define the data as uniform as possible. 
In the early programmable shader's days, there were specific attributes with specific 
names for texture coordinates, normals, vertex colors, and so on. Now, all attributes 
are generic and have no special names. They are simply vertex attribute buffers.

In order to show how attributes are bound to the vertex shader, we need to see  
how to set them up in the OpenGL host application.

First, we have to create and fill a vertex array configured with vertices and texture 
coordinates (for example). There are many ways to accomplish this. I'll present an 
interleaved vertex array object (VAO) that will hold one complete vertex in the buffer 
(position and texture coordinates) at once, so the buffer will look like XYZWSTXYZWST, 
with XYZW as the vertex position coordinates and ST as the texture coordinates:

// Create vertex array object (VAO)
glGenVertexArrays(1, &vaoID);
glBindVertexArray(vaoID);

// Create vertex buffer object (VBO)
glGenBuffers(1, &vboID);
glBindBuffer(GL_ARRAY_BUFFER, vboID);

// Fill buffer with data
glBufferData(GL_ARRAY_BUFFER, bufferElementsCount * sizeof(GLfloat), 
bufferData, GL_STATIC_DRAW);

// Tell OpenGL how to locate the first attribute (positions) inside 
the buffer
glEnableVertexAttribArray(0);
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glVertexAttribPointer(0, 4, GL_FLOAT, GL_FALSE, (4 + 2)* 
sizeof(GLfloat), NULL);

// Tell OpenGL how to locate the second attribute (texture 
coordinates) inside the buffer
glEnableVertexAttribArray(1);
glVertexAttribPointer(1, 2, GL_FLOAT, GL_FALSE, (4 + 2) * 
sizeof(float),(void*)(4 * sizeof(float)));

// Deactivate VAO
glBindBuffer(GL_ARRAY_BUFFER, 0);
glBindVertexArray(0);

In this code snippet, I have set up a VAO with two vertex attributes. In the attribute 
with index 0, I have placed the vertex positions, and in the array with index 1,  
the texture coordinates.

So, now that we have our data ready, let's get back to the shader. We need to know 
how to access our buffer from the vertex shader. Although there are some options 
for this, I always use the most explicit (and simplest) one. Recollecting the fact that I 
put positions in slot 0 and the texture coordinates in slot 1, I'll use the slot numbers 
to access data from the shader with that information. An empty vertex shader would 
look like the following:

#version 430
#pragma debug(on)
#pragma optimize(off)

// 0 -> the slot I set with the glEnableVertexAttribArray(0) call for 
the vertices' positions
layout (location = 0) in vec4 position;

// 1 -> the slot I set with the glEnableVertexAttribArray(1) call for 
the vertices' positions
layout (location = 1) in vec2 texCoords;

void main()
{
  // Do something here
}
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As you can see, we've used the keyword in. Also, we're explicitly telling the shader 
in which slot we have placed the attributes. This way of specifying attributes could 
be good for your rendering system if you always use the same attributes layout,  
but if not, you have the option to let OpenGL automatically assign the slot and  
later query it.

Uniform variables
You can pass your application's single variables unrelated with the pipeline or with 
any other constraint. These variables' values are constant until you change their 
values from your OpenGL host application.

Using these variables, you can pass the transform matrices to the shader, lighting 
parameters, or whatever you can think of. Let's create our first working vertex  
shader with them.

First, let's upload the variables' values to the GPU in the OpenGL host application:

// Enable our shader program. Before doing any operation like setting 
uniforms or retrieving vertex attribute slot numbers, the shader must 
be activated/bound using this function
glUseProgram(programID); 

// Value to be uploaded to the GPU
GLfloat mdlv[16] = …; // Fill with proper values
GLfloat proj[16] = …; // Fill with proper values

// retrieve variable's slots from the shader using the variable's 
names in the shader
Glint location = glGetUniformLocation(programID, "Modelview");
// Upload the values to the shader
glUniformMatrix2fv(location, 1, GL_FALSE, mdlv);

location = glGetUniformLocation(programID, "Projection");
glUniformMatrix4fv(location, 1, GL_FALSE, proj);

And that's all. The values are ready to be used in the shader. Let's complete the  
GLSL example:

#version 430
#pragma debug(on)
#pragma optimize(off)

layout (location = 0) in vec4 Position;
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// uniform matrices declaration. This must be done globally
uniform mat4 Modelview;
uniform mat4 Projection;

void main()
{
  // Let's compute the vertex position in clip coordinate system
  gl_Position = Projection * Modelview * Position;
}

Besides uploading a plain array of floats as uniform values, we have declared 
variables of the mat4 type. GLSL will take care of formatting those arrays into the 
target type automatically. Of course, the data must fit naturally. You can't simply 
map bool to mat4, or even float[9] to mat4. You must be careful with this.

gl_Position is a special (built-in) value that must hold the transformed vertex 
position. This is the only requirement for a vertex shader and is its main purpose. 
Not putting a value there will render your shader unusable and ill-formed and you 
will get a compiler error.

Vertex shader outputs
Vertex shaders can output generic values to the next stage. Those values are  
going to be passed to the geometry shading stage first, then rasterized, and finally 
passed to the fragment shading stage in one of the allowed interpolation fashions. 
You can choose the kind of interpolation, but we will use in this book a linear 
perspective-corrected interpolation. 

To specify an output variable, you must use the interpolation type along with the  
out keyword:

#version 430
#pragma debug(on)
#pragma optimize(off)
layout (location = 0) in vec4 Position;
layout (location = 1) in vec2 TexCoord;

uniform mat4 Modelview;
uniform mat4 Projection;

// smooth = linearly perspective-correct interpolation
smooth out vec2 texCoordsInterpolated;
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void main()
{
  gl_Position = Projection * Modelview * Position;

  // Write the vertex attribute into an output variable that will be  
  interpolated in a later pipeline's stages
  texCoordsInterpolated = TexCoord;
}

Drawing a simple geometry sample
In order to have a runnable shader program, we need a vertex shader and a fragment 
shader. Until now, we have not spoken about fragment shaders, but we still need one 
to run the samples, so I'll present here a simple fragment shader to use in conjunction 
with the next vertex shaders. This will be our sample fragment shader, kept as simple 
as possible for learning purposes:

// Fragment shader
#version 430
#pragma debug(on)
#pragma optimize(off)

uniform vec4 SolidColor;

// Writing to this variable will set the current fragment's color
out vec4 frameBufferColor; 

void main()
{
  frameBufferColor = SolidColor;
}

This fragment shader paints the whole triangle surface with a solid color, provided 
by means of a uniform variable (fragment shaders also have uniform variables).
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Coming back to the vertex shaders, let's start with a simple one. The simplest  
thing we could want to do is show our geometry as it is, on the screen, rendered 
with a single solid color. So, we only have to transform our vertices using the 
corresponding matrices:

// Vertex shader
#version 430
#pragma debug(on)
#pragma optimize(off)

layout (location = 0) in vec4 position;

uniform mat4 Modelview;
uniform mat4 Projection;

void main()
{
  gl_Position = Projection * Modelview * position;
}

We can also compute projection modelview in the CPU and pass the result to the 
shader. We can stop it from being executed many times in the shader, because that 
multiplication always throws the same result (as long as both matrices don't change) 
for all primitives in our current OpenGL drawing call. So, our shader would look like 
the following:

// Vertex shader
#version 430
#pragma debug(on)
#pragma optimize(off)

layout (location = 0) in vec4 Position;

uniform mat4 ProjectionModelView;
void main()
{
  gl_Position = ProjectionModelView * Position;
}
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If we compute the needed values' vertex positions for a teapot (or any other triangle 
mesh) and use this current sample's shader, passing a half red color in the uniform 
variable, we will get a render like the one in the following figure: 

Distorting a geometry sample
OK, now that we have our geometry correctly rendered, let's perform some distortions 
on it. First, we will scale the teapot in the horizontal direction. We will need a scale 
matrix and to apply it to the geometry as the first transform to be applied:

// Vertex shader
#version 430
#pragma debug(on)
#pragma optimize(off)

layout (location = 0) in vec4 Position;

uniform mat4 ProjectionModelView;
void main()
{
  // Remember that the first vec4 is the first column, not the first  
  row, although in the code apparently it looks like a row because of  
  the way it's written
  mat4 scale = mat4(vec4(1, 0, 0, 0),// scale in the X direction
  vec4(0, 1, 0, 0),// scale in the y direction
  vec4(0, 0, 1, 0),// scale in the z direction
  vec4(0, 0, 0, 1));
  gl_Position = ProjectionModelView * scale * Position;
}
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This shader has no deformation in the scale matrix. All scale factors are 1.0,  
which means that all will remain in its original state. But look at the next figures 
when we change the scale factors:

A

B

C

To deform the A teapot, we have used the following scale matrix:

mat4 scale = mat4(vec4(1, 0, 0, 0), 
  vec4(0, 1.5, 0, 0), // 150% scale in Y direction
  vec4(0, 0, 1, 0),
  vec4(0, 0, 0, 1));
For the (B) teapot, our matrix was:
mat4 scale = mat4(vec4(1.5, 0, 0, 0), // 150% scale in X direction
  vec4(0, 1, 0, 0), 
  vec4(0, 0, 1, 0),
  vec4(0, 0, 0, 1));
And finally, the (C) teapot's scale matrix was:
mat4 scale = mat4(vec4(1, 0, 0, 0), 
  vec4(0, 1, 0, 0), 
  vec4(0, 0, 3, 0), // 300% scale in Z direction
  vec4(0, 0, 0, 1));

As you can see, just by applying the proper transform matrix, we get the desired 
deformation. Of course, there are other types of transform matrices: translations, 
rotations, and scales (and combinations of those) are the most widely used ones.
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Using interpolators
Other output vertex values apart from gl_Position are often called interpolators. 
This is because the values stored there will be interpolated across the primitive's 
surface in the later stages. To explain this briefly, suppose that you are rendering 
a line. Then you want a different vertex color in each vertex, so you set up a vertex 
attribute array that stores those colors. Now suppose the color in the first vertex is 
pure white, and the color in the second vertex is pure black. If you put those vertex 
colors into an interpolator and pick that interpolated value in a fragment shader, 
each fragment to be painted will present an interpolated color between pure black 
and pure white. To summarize, the line you are drawing will form a gradient of 
grays, from pure white to pure black.

Using a 2D shape such as a quad and placing in each corner the values (0,0), (1,0), 
(0,1), and (1,1), we obtain the next diagram:

 

As you can see, the points that are generated in-between have been linearly 
interpolated; the closer to one corner, the closer the values.

The best way to visualize this is with colors. Let's render a triangle with a different 
color in each vertex: green in the left-bottom corner, right in the top corner, and blue 
in the bottom-right corner. The code for the same is as follows:

// Vertex shader
#version 430
#pragma debug(on)
#pragma optimize(off)
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layout (location = 0) in vec4 Position;

// Vertexcolor buffer mapping
layout (location = 1) in vec4 VertexColor;

// Interpolator for our vertex color
smooth out vec4 interpolatedColor;

uniform mat4 ProjectionModelView;

void main()
{
  interpolatedColor = VertexColor;
  gl_Position = ProjectionModelView * scale * Position;
}

// Fragment shader
#version 430
#pragma debug(on)
#pragma optimize(off)

// Here we are receiving the interpolated vertex color
smooth in vec4 interpolatedColor;
out vec4 frameBufferColor;

void main()
{
  frameBufferColor = interpolatedColor;
}

This shader will produce the following rendering:
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Simple lighting
Lighting is a quite extensive topic. You could write an entire book about this and 
you will only scratch the surface. There are so many techniques, from flat shading to 
normal mapping, passing through ambient occlusion or other global illumination 
techniques. We will talk in this section about how to prepare our vertex shaders to 
achieve, in the next chapter, convincing lighting effects using fragment shaders.

Basic lighting theory
First of all, I have to explain what comprises the Phong lighting model, because  
that's the one we base all our examples on, and nothing is better than a diagram  
for this purpose.

The Phong lighting model is a simple equation. It divides the light into  
three components: 

•	 Ambient: This provides constant lighting contribution.
•	 Diffuse: This provides lighting contribution that depends on the light's 

position and the surface's point that is being lit (usually represented by  
a normal vector).

•	 Specular: This provides lighting contribution that depends on the light's 
position, the surface's point (normal), and the camera/viewer's position. This 
lighting component is a small and bright dot that appears on very reflective 
surfaces, such as metal or plastic.
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In our scenes, we would typically have a point of light, a camera (the eye), and an 
object to be lit. To illuminate each point of the object's surface, we need to know at 
least one important thing: the normal vector in that exact point (a normal vector is a 
normalized vector that is perpendicular to a surface's points). Let's call that vector  
N. We also need the vector that comes from the light and reaches the surface's point, 
as well as the vector that comes from the camera's position (the eye in the diagram).

According with this illumination model, the areas where the normal vectors are 
parallel to the light vectors will receive maximum lighting influence, and the areas 
where the angle between the normal vector and light vector are larger than 90 
degrees won't be affected by light.

The camera's position affects only the specular component of the light. When we 
complete the lighting equation, this will be clear.

As you will see, the math will not be very involved, just a bit of linear algebra. Our 
main concern, and the decision that will define our illumination shader, will be how 
to compute the normal at each surface's point.

Depending on how we compute the triangles' normals, we will have  
different renderings:

•	 Flat Shading: This means we have the same normal for the whole triangle 
surface, and the same normal equates to the same lighting over the whole 
surface, so the triangle will be lit uniformly.

•	 Gouraud Shading: This uses only vertex normal computing's lighting 
contribution in the vertex shader and interpolates that contribution  
to the fragment shader.

•	 Phong Shading: This uses only vertex normals, which are interpolated  
across the triangle's surface to the fragment shader. Then, lighting is 
computed in the fragment shader using interpolated normals.
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•	 Normal mapping: Normals come from a texture map; so, by fetching a 
normal from a texture, we get a very accurate normal for every fragment  
and not just an approximation by interpolation.

Lighting example code
Now to finish with lighting theory, let's introduce the lighting equation. In computer 
graphics, light is often divided into three (or more) independent elements that 
contribute to the final result. Those elements are, as said before, the ambient 
contribution, the diffuse contribution, and the specular contribution. I won't enter 
too deeply into these math equations, mainly because you can find the equations 
everywhere and because the point of this book is about shaders, not algorithms.

All three of these components are calculated and summed together to get the final 
lighting contribution at each point. Now, let's write down a vertex shader to produce 
a Gouraud lighting effect:

// Vertex shader
#version 430
#pragma debug(on)
#pragma optimize(off)

layout (location = 0) in vec4 Position;

// Vertex normals buffer mapping
layout (location = 1) in vec3 VertexNormal;
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// Interpolator for our light
smooth out vec3 lightContribution;

/* Matrix to transform normals. This is the transpose of the  
    inverse of the upper leftmost 3x3 of the modelview matrix */
uniform mat3 NormalMatrix;

uniform mat4 ModelView;
uniform mat4 Projection;

// We need to know where the light emitter is located
uniform vec3 LightPosition;

// The color of our light
uniform vec3 LightColor;

// Note: All vectors must always be normalized 
void main()
{
  gl_Position = ProjectionModelView * Position;

  vec3 normal = normalize(NormalMatrix * VertexNormal);
  
  // Compute vertex position in camera coordinates
  vec4 worldVertexPos = ModelView * Position;

  // Compute the vector that comes from the light
  vec3 lightVec = normalize(LightPosition – worldVertexPos.xyz);

  /* Compute the vector that comes from the camera. Because we  
    are working in camera coordinates, camera is at origin so the  
    calculation would be:
  normalize(vec3(0,0,0) - worldVertexPos.xyz); */
  vec3 viewVec = normalize(-worldVertexPos.xyz);

  /* Calculate the specular contribution. Reflect is a built-in 
    function that returns the vector that is the reflection of  
    a vector on a surface represented by its normal */
    vec3 reflectVec = reflect(-lightVec, normal);

  float spec = max(dot(reflectVec, viewVec), 0.0);
  spec = pow(spec, 16.0);
  vec4 specContrib = lightColor * spec;

  /* We don't want any ambient contribution, but 
  let's write it down for teaching purposes */
  vec3 ambientContrib = vec3(0,0,0);
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  // Calculate diffuse contribution
  vec3 diffContrib = lightColor * max(dot(lightVec, normal), 0);

  /* Final light contribution that will be interpolated in the 
  fragment shader */
  lightContribution = ambientContrib + diffContrib + specContrib;
}

// fragment shader
#version 430
#pragma debug(on)
#pragma optimize(off)

// Interpolator for our light
smooth int vec3 lightContribution;

out vec4 frameBufferColor;

void main()
{
  frameBufferColor = vec4(lightContribution, 1.0);
} 

This could seem a complex shader, but if you read it carefully, you can see that we 
didn't do anything really fancy: just addition/subtraction of some vectors, some 
normalization, and not much else.

This shader, also called per-vertex lighting, produces the following rendering:

Gouraud lighting shader
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Summary
In this chapter we learned how vertex shaders must be made and how to  
manage inputs and outputs. We also touched upon and understood a very  
important topic—the interpolators. Interpolators will be the basic mechanism  
of all our future shaders.

I also introduced some basic lighting concepts that, in the end, produced a  
per-vertex lit object. In the next chapter we will improve our lighting techniques, 
from per-fragment lighting to normal mapping. We will also see some other 
interesting imaging shaders.





Fragment Shaders
Fragment shaders are probably the most important type of shaders of all. They are so 
important that a casual reader would understand them simply as shaders.

Using fragment shaders is the only way of painting something on the screen. They 
are responsible for updating the framebuffer with colors and depth; so, in short,  
in the last term, all that you see on the screen is painted by a fragment shader.

In this chapter we will learn how fragment shaders are executed, what they can do, 
and what they can't. Also, we will see how fragment shaders interact with other 
pipeline stages.

Execution model
When a primitive stage has ended, its processing in the vertex primitive stages 
(vertex shaders, geometry shaders, and clipping) becomes rasterized. The fragment 
shader execution begins this rasterization.

Consider a triangle; in order to paint that triangle onto the screen you need to 
convert it from its native vectorial form (vertices coordinate) to discrete pixels. The 
system that carries out that action is the fragment shader module, being executed 
once per each fragment.

The more of the framebuffer's area the primitive covers, the more times the fragment 
shader will be executed. The fragment shaders' performance has direct influence on 
your application's fill rate (the speed at which the GPU can output fragments).
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Having said that, let's see two very important constraints about fragment shaders:

•	 A fragment shader can't read the framebuffer. It's only capable of writing 
into it. If you need to mix your framebuffer with the result of your fragment 
shader computations, you only have two choices and both imply multipass 
rendering techniques:

°° Rely on the blending mechanism to mix the previous content of the 
framebuffer with your current rendering

°° Render firstly into a texture and use that texture as an input for your 
fragment shader

•	 A fragment shader is executed for a specific fragment that lies in a specific 
framebuffer location (x, y). In other words, you can't use your shader to 
modify other parts of the framebuffer.

Terminating a fragment shader
The usual way of terminating the execution of a fragment shader is when a return 
instruction is found or when the closing bracket of the main function is reached, 
but there is another one, especially for a fragment shader. If you use the keyword 
discard, the execution of the fragment shader at that point will stop, and the 
framebuffer won't be updated at all. This means that neither the color, depth,  
and stencil buffers, nor any other buffer that forms part of the framebuffer will be 
updated. Other subbuffers, such as the stencil buffer, for example, will also remain  
untouched. Think of discarding fragments as creating holes in your mesh. 

Inputs and outputs
As the rest of the shaders, fragment shaders can receive uniform variables as  
input. They work exactly as for vertex shaders, so there isn't much to say at this  
point except if we talk about textures. Textures are represented by an opaque 
variable type: a sampler (an opaque type is a special type that can only be used  
with built-in functions and cannot be used in mathematical operations). To make  
a texture available, you have to declare its uniform variable, using the right sampler 
type. Depending on the class of the texture you should use one sampler or other.  
A brief list is:

•	 sampler1D (for 1D textures)
•	 sampler2D (for 2D textures)
•	 sampler3D (for 3D textures)



Chapter 4

[ 59 ]

•	 samplerCube (for cubemaps)
•	 sampler2DArray (for arrays of 2D textures)
•	 sampler2DShadow (for 2D shadow maps)

Samplers are special variable types that can only be used as uniforms. 
You can't declare a sampler inside a function.
In the host application, when you want to upload a sampler you just have 
to upload a uniform integer type, representing the texture unit where 
the texture is currently bound. A common mistake is using the texture 
name (ID) instead of the texture unit. A little sample would be:

/* textureNames is an array of strings and ids with 
name of the texture inside the shader */
for(int i = 0; i<numberOfTextures; ++i)
{
  // Activate texture unit 'i'
  glActiveTexture(GL_TEXTURE0 + i);
  glBindTexture(GL_TEXTURE_2D, textureNames[i].id);
  intloc = glGetUniformLocation(shaderID, 
textureNames[i].name);
  glUniform1i(loc, i); 
}

As said in Chapter 3, Vertex Shaders, fragment shaders receive vertex attributes (or 
other calculated values in a per-vertex basis) interpolated by one of the available 
manners (for us, linearly and perspective corrected); thanks to the interpolators.

Just to clarify, the term interpolator is not an official word in GLSL, but a description 
of what they do. Through different OpenGL versions, they had taken different 
names. In early GLSL versions and in the current OpenGL/ES Shading Language, 
their name is varying variables. Currently, in OpenGL, there are simply the in 
variables, but because in is not a very good name and varying is outdated,  
I'll refer to them as interpolators. 

As outputs, I will mention two. During a fragment shader execution you must 
output the current fragment's color. This is mandatory and the main duty of a 
fragment shader, but you optionally can modify the fragment's depth.

In order to modify the fragment's depth, you don't need to declare anything, because 
a special built-in variable already exists for that purpose: gl_FragDepth. Writing to 
that variable (it's just a float variable) will modify the fragment's depth. This is very 
handy for some effects like HUDs, 3D font rendering, coronas, sun flares, and so on, 
but not for normal renderings, so we will rarely modify it in the examples.
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Examples
In the following pages I'm going to present some examples, from the most basic one 
to a complex lighting shader. 

Solid color mesh
The first one is a very simple shader that writes the mesh in a solid color, received 
using a uniform variable:

#version 430
#debug(on)
#optimize(off)
uniform vec4 SolidColor;
out vec4 FBColor;

void main()
{
  FBColor= SolidColor;
}

Using a half red color stored in the SolidColor uniform variable, over a cylinder 
mesh, we get the following rendering:

Using only uniforms as input we can't do much more than this, so I'll colorize the 
cylinder using its own vertices' positions.
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Interpolated colored mesh
First, in the vertex shader, set up an interpolator of vec3 type and place the xyz of the 
position attribute there. Then, use the following fragment shader:

#version 430
#pragma debug(on)
#pragma optimize(off)

uniform vec4 SolidColor;
in vec3 InterpolatedPosition;

out vec4 FBColor;
void main()
{
  FBColor = vec4(InterpolatedPosition, 1.0);
}

The following is the vertex colorized cylinder as result of rendering with this  
last shader:
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Before explaining this example, let me explain a bit about colors in fragment shaders. 
Colors are represented in the range 0 to 1, where 0 is the minimum intensity and 1 
is the maximum intensity. The values in between represent intermediate intensities. 
A complete color is composed with four channels: red, green, blue, and alpha 
(transparency) in the respective order. For example, (1, 0, 0, 1) represents 
opaque pure red, (1, 1, 0, 1) is opaque pure yellow, (0.5, 0.5, 0.5, 0.5) is 
semi-transparent grey.

Perhaps you worked in the past with colors in the range 0 to 255. It's the same thing, 
and the only difference is that inside a shader, colors are automatically normalized, 
and more importantly, they are clamped. So, if because of a calculation, a color 
becomes -1.5 or 2.9, it is clamped to 0 or 1.

Having said that, let's see what happened to our cylinder. Because the vertex 
coordinates are in an arbitrary range, probably larger than 1 and with negative 
values, they are clamped to [0,1], which means that any vertex value larger than 
1 will be saturated when used as a color, and given that the cylinder is centered in 
(0,0,0), colors are kind of radial. So, because in our sample RGB is in the same 
order as XYZ, R represents the x direction, G the y direction, and B the z direction, 
and that explains why our cylinder takes those colors.

Now that you have a rough idea of what things we can achieve with the available 
elements, we will unlock the full potential of fragment shaders with the use of textures.

Using interpolators to compute the texture 
coordinates
Using the vertex shader of the previous chapter that enabled an interpolator for 
texture coordinates, we are going to map a texture onto our cylinder using the 
following fragment shader:

#version 430
#pragma debug(on)
#pragma optimize(off)

uniform sampler2D Image;
in vec2 TexCoordInterpolated;

out vec4 FBColor;
void main()
{
  /* Next line means: "take the texel (texture pixel) of
  'Image' at 'TexCoordInterpolated' position" */
  FBColor = texture(Image, TexCoordInterpolated);
}
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As you can see I've used a built-in function; in this case, texture. There are many 
texture lookup functions, depending on the usage we pretend. You can read about 
them in the GLSL specification, but we will focus only on normal texture lookup 
functions such as texture.

Also, I declared an identifier for the texture. This is a sampler type variable and it can 
only be used in texture lookup functions.

Our textured models would look like the following rendering:

Phong lighting
It's time now for a more complex shader. I'm going to continue with the lighting 
shader shown in the Chapter 3, Vertex Shaders, but this time, I'll pass all calculations  
to the fragment shader. 

The goal of the next shader will be to achieve per-pixel lighting, but using a mask 
stored in the alpha channel of the texture to nullify the light's specular contribution 
on those red rusty areas.

In addition, I'm going to use a more detailed 3D model. The most common purpose 
of adding lighting to a 3D scene is to empathize the surface's details. A plane or 
a cylinder has no surface details because they are uniform so no details will be 
improved by the use of lighting there.
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So, let's start out with a sample of the Phong shading:

// Vertex shader for simple Phongs Lighting model
#version 430
#pragma optimize(off)
#pragma debug(on)

uniform mat4 Modelview;
uniform mat4 Projection;

/* Matrix to transform normals. This is the transpose of the 
  inverse of the upper leftmost 3x3 of the modelview matrix */
uniform mat3 NormalMatrix;

layout (location = 0) in vec3 Position;
layout (location = 1) in vec2 TextCoord;
layout (location = 2) in vec3 Normal;

smooth out vec2 TextCoordInterp;
smooth out vec3 PositionInterp;

/*This time we will interpolate the Normal, not the total computed
lighting contribution*/
smooth out vec3 NormalInterp;

void main()
{
   PositionInterp = (Modelview * vec4(Position, 1.0)).xyz;
   TextCoordInterp = TextCoord;

   // Normals transform
   NormalInterp = normalize(NormalMatrix * Normal);
   gl_Position = Projection * Modelview * vec4(Position, 1.0);
}

The only difference with the shader explained in the previous chapter is that we 
are, additionally, interpolating the vertex position. This interpolated value, in the 
fragment shader will be the effective 3D position in camera coordinates (because we 
transformed it using the modelview matrix) of each triangle's fragment. We need this 
value because we are going to compute the lighting at that exact point:

// fragment shader for simple Phongs Lighting model
#version 430
#pragma optimize(off)
#pragma debug(on)
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uniform sampler2D Image;

// Light position, in camera coordinates
uniform vec3 LightPosition;

// The color of our light
uniform vec3 LightColor;
smooth in vec2 TextCoordInterp;
smooth in vec3 NormalInterp;
smooth in vec3 PositionInterp;

out vec4 FBColor;

void main()
{
    /* After interpolation, normals probably are denormalized, 
    so we need renormalize them */
    vec3 normal = normalize(NormalInterp);

    /*Calculate the rest of parameters exactly like we did in the
vertex shader version of this shader*/
vec3 lightVec = normalize(LightPosition - PositionInterp);
vec3 viewVec = normalize(-PositionInterp);
vec3 reflectVec = reflect(-lightVec, normal);
float spec = max(dot(reflectVec, viewVec), 0.0);
spec = pow(spec, 16.0);
vec4 textureColor = texture(Image, TextCoordInterp);

vec3 specContrib = LightColor * spec;

 // No ambient contribution this time
vec3 ambientContrib = vec3(0.0, 0.0, 0.0);

vec3 diffContrib = LightColor * max(dot(lightVec, normal), 0.0);

/* Apply the mask to the specular contribution. The "1.0 –" is
To invert the texture's alpha channel */
vec3 lightContribution = ambientContrib + diffContrib + (specContrib * 
(1.0 – textureColor.a));

FBColor = vec4(textureColor.rgb * lightContribution, 1.0);
}
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As you can see, the shader is 90 percent equal to the per-vertex light version, but the 
resulting rendering differs quite a lot.

Remember that normalizing the normal vector again in the fragment 
shader, because after the interpolation, it will be denormalized. 
Also, all other vectors must be normalized too. This is very 
important, because the dot products involved in the calculations 
need the normalized values to work correctly.

I'll show a few variants of this shader to see what is happening inside when lighting, 
texture, and masks are progressively applied.

First, let's view the result when no lighting is applied at all, and only texturing  
is applied:

It's not very detailed, isn't it? Well, let's see what happens when we replace the 
texture by the lighting calculations, using the same exact mesh:
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This has more appeal, doesn't it? Notice the specular reflections, the brightest ones, 
and the smooth darkening in the areas where the light barely reaches.

To achieve this lighting effect, go to the fragment shader and just remove the texture 
lookup and replace the two last lines with the following:

vec3 lightContribution = ambientContrib + diffContrib + specContrib; 
FBColor = vec4(vec3(lightContribution), 1.0);

Now, let's see how the mask stored in the alpha channel hides the specular 
contribution in the next render:
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If you want this result, just multiply the specular contribution by one minus the 
alpha channel of the texture (1.0 - textureColor.a).

Now, let's combine the lighting with the mask and the texture, which is the exact 
result of the shader I explained earlier:

Notice here how the red dusty areas obscure the specular contribution, making this 
model more realistic. 

Nowadays, Phong is a basic lighting model, but some years ago (not many!) it was 
an advanced model, because graphics cards only had enough processing power for 
this. Now, shaders could be bigger and more complex, and even they could have 
nested loops, or loops with a variable iterations number (coming from a uniform 
variable or textures) rather than fixed ones. They can have branches, functions,  
tens of texture accesses, and many other things.

These days one could program a ray tracer inside a shader or even another Global 
Illumination Lighting Model such as Ambient Occlusion or Radiosity. The power  
is there for you to use.
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Summary
In this chapter we learnt about how to complete the pipeline in order to write shader 
programs that effectively produce a complete and valid output.

We also learned the techniques needed to render from the most basic algorithm,  
a solid color, and a complete illumination model (Phong). You should be able to  
face any other rendering type, mixing textures with calculations to produce  
awesome results.

You now have the tools to build advanced effects by yourself, such as normal 
mapping, reflections, parallax, and post-processing.

In the next chapter we will face a different type of shader, not meant to define the 
final aspect to our scene but to provide more flexibility and complexity.





Geometry Shaders
Up until now, we've learnt the basic configuration of the pipeline and how to 
produce a render using a soup of triangles and textures. In this chapter, we will  
add a new shader type to our knowledge set. It will serve to improve our scenes, 
giving them more flexibility by letting us interact more deeply with the pipeline,  
but without having to increase the CPU side code or the bandwidth between the 
CPU and the GPU.

In this chapter, we will learn how these new shaders work and cover a few examples 
of techniques where geometry shaders could give us great flexibility. We will cover  
the following topics:

•	 How to replicate geometry on the fly, for example, to make twin models
•	 How to make a particle or crowd system with complex-shaped particles 

parting from bare points

Geometry shaders versus vertex shaders
Although geometry shaders transform vertices in a very similar way than vertex 
shaders do, we have to enumerate some important differences between them:

•	 Vertex shaders are executed once by an incoming vertex. Geometry shaders  
are executed once (by default) by an incoming primitive.

•	 Vertex shaders can't access any information about adjacent vertices.  
A geometry shader has all the information for a given primitive and  
adjacent ones.

•	 Vertex shaders don't produce new vertices. Geometry shaders create new 
primitives (in fact, that's the main purpose).
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In addition, there are other facts about geometry shaders that must be known:

•	 The geometry shader stage happens after the primitive assembly stage.
•	 A geometry shader receives assembled primitives. This means that it doesn't 

matter if you send triangles, triangle strips, or fans of triangles. A geometry 
shader will always receive a triangle. The same happens with lines, line 
strips, or line loops. The primitives that will reach the geometry shader  
will be single lines.

•	 The incoming primitive will be discarded after geometry shader execution.
•	 The type of the input primitive isn't forced to be the output. This means that, 

for example, we can use points as inputs and triangle strips as outputs.

Geometry shaders are available as an OpenGL extension from almost any OpenGL 
version, but since Version 4.0, a geometry shader can be invoked more than once per 
primitive. You can use a built-in variable (gl_InvocationID) to distinguish between 
each execution on the same primitive during the same draw call.

There are also a lot of additional outputs for a geometry shader rather than the 
primitives (viewport ID, layer ID), but these are meant for advanced users and  
we will not care much about them.

Inputs and outputs
Besides the usual inputs and outputs (uniforms and vertex attributes), there are new 
elements that need to be considered.

Primitives, our main input and output element, are complex, and because of that 
we have to be careful and specify very well what we are doing at each time. The 
primitive type specified in the geometry shader must match exactly with the 
primitive that we are drawing (using a GL call like glDrawArrays, for instance). 
This means that we cannot happily write a general purpose geometry shader for 
everything. Also, we have to specify the primitive type and the number of vertices 
that will be emitted (created) statically in the shader.

For these purposes, we have the layout keyword. With it, we could define an  
input and an output layout. As an example, we could do something similar to  
the following:

layout(triangles) in;
layout(triangle_strip, max_vertices = 6) out;
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Options for an input layout are as follows:

•	 points

•	 lines (this includes primitives drawn as GL_LINES, GL_LINE_STRIP,  
and GL_LINE_LOOP)

•	 lines_adjacency (GL_LINES_ADJACENCY GL_LINE_STRIP_ADJACENCY)
•	 triangles (including GL_TRIANGLES, and GL_TRIANGLE_STRIP, and  

GL_TRIANGLE_FAN)
•	 triangles_adjacency (including GL_TRIANGLES_ADJACENCY and  

GL_TRIANGLE_STRIP_ADJACENCY)

Options for an output layer are as follows:

•	 points

•	 line_strip

•	 triangle_strip

Note that in case of single triangles, single lines cannot be used as 
output. If you want to output more than one line or more than one 
triangle, it must be in both cases, in the form of strips. Also, input 
and output types are not related, as we will see in the examples of 
this chapter.

Also, you must specify statically the number of vertices that will be emitted  
(max_vertices).

Interface blocks
With the incorporation of a new type of shaders, communications between all 
of them becomes a little complex. Now it isn't enough with basic interpolators 
(although the basic concept is still there). A new mechanism called interface  
blocks handles this communication in a more efficient way.

Think of an interface block as structures (although they really aren't) that serve to 
interconnect shaders' stages. Interface block definitions must match in the shaders 
they are declared in, if not, a linkage error will occur.
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At this point, we have two in-between spaces: between the vertex and geometry 
shaders and between the geometry and fragment shaders. For the first case, we have 
to define an output interface block in the vertex shader, and the same interface block  
in the geometry shader but as an input block. Let's give an example:

// vertex shader output interface block
out MyPerVertexVariables
{
  smooth vec2 TextCoords;
  smooth vec3 Normal;
} perVertex;
// geometry shader input interface block
in MyPerVertexVariables
{
  smooth vec2 TextCoords;
  smooth vec3 Normal;
} perVertex[]; // here the instance name is an array, to hold all 
perVertex of a primitive

In the case of the communication between geometry and fragment shaders, it's more 
or less the same:

// Geometry shader output interface block
out MyInterpolators
{
  smooth vec2 TextCoords;
  smooth vec3 Normal;
}interpolators;
// fragment shader input interface block 
in MyInterpolators
{
  smooth vec2 TextCoords;
  smooth vec3 Normal;
}interpolators;

As you can see, this is more or less the same as using normal in/out variables, but 
there are some logic restrictions (a fragment shader can't define an output interface 
block, a vertex shader can't define an input interface block).

The key to allow GLSL to perform the linkage between two interface blocks 
is that the struct name (not the variable!) must be the same. In our example, 
MyInterpolators, MyPerVertexVariables, and the fields defined inside  
must match exactly in the two involved shader stages.
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The interface block's variable name doesn't affect the linkage. 
It can be different in both blocks.

Also, GLSL provides us with a built-in interface block called gl_in. It is intended for 
holding a primitive's vertices positions, and it has been defined in this way:

in gl_PerVertex
{
    vec4 gl_Position;
    float gl_PointSize;
    float gl_ClipDistance[];
} gl_in[];

The variables gl_PointSize and gl_ClipDistance don't have much interest for us 
right now. We will focus on gl_Position.

To give an example, consider that our input types are triangles, then gl_in will 
have a size of 3 (one element per vertex) and each gl_in[].gl_Position will be the 
position of that vertex after being transformed by the vertex shader and assembled 
during the primitive assembly stage.

A last note about interface blocks is that they can be unnamed. You are not forced to 
give them an instance (variable) name. If you choose this manner, the access to the 
members is just the member name. In a vertex, shaders gl_Position is implicitly 
declared as:

out gl_PerVertex 
{
    vec4 gl_Position;
    float gl_PointSize;
    float gl_ClipDistance[];
};

As the preceding interface block has no instance name, you can safely access the 
members directly, as you were doing until now. You can also do this with your  
own interface blocks, but for the sake of code clarity, I’d suggest to use them with  
the usual structure’s nomenclature (name of the structure dot member)

Example – pass-thru shader
Let's write our first geometry shader, a pass-thru shader that will produce as output 
the same primitive that reaches the geometry shader as input:

#version 430
#pragma optimize(off)
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#pragma debug(on)
// Establish our primitive's input and output types, as well as the 
number of vertices that we will produce.
layout(triangles) in;
layout(triangle_strip, max_vertices = 3) out;
void main()
{    
  // GLSL provides us with the .length() method for arrays. It tells 
us the number of elements in the vector.
    for(int i = 0; i < gl_in.length(); ++i)
    {
    // gl_in is the standard input interface block
        gl_Position = gl_in[i].gl_Position;
    // The next function, will emit the computed vertex to the 
pipeline
        EmitVertex();
    }
// The next function will close the primitive
    EndPrimitive();
}

The pass-thru shader has no effect in the sense as the rendering is not affected at all. 
It is not very useful in a real environment, but it is very handy to show how a new 
primitive is produced.

Creating a new primitive is as simple as writing out all out variables of a vertex (in this 
case, only gl_Position) and then calling the function EmitVertex(). This function 
will effectively create a new vertex with the data that has been filled in the out 
variables. When you are done with all vertices, a simple call to the EndPrimitive() 
function will close the primitive and make it ready for further pipeline stages.

Example – using attributes in the interface 
blocks
For the next example, we will need to use more vertex attributes than the position, so 
we will have to create an interface block to pass all of them to the geometry shader.

Let's see this in the following example:

// Vertex shader
#version 430
#pragma optimize(off)
#pragma debug(on)
uniform mat4 Modelview;
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uniform mat4 Projection;
layout (location = 0) in vec3 Position;
layout (location = 1) in vec2 TextCoord;
layout (location = 2) in vec3 Normal;
// Now, we will define in this block the interpolators
out VertexData
{ 
    smooth vec2 TextCoord;
    smooth vec3 Normal;
} vertexOut;
void main()
{
    gl_Position = Projection * Modelview * vec4(Position, 1.0);
    vertexOut.TextCoord = TextCoord;
    vertexOut.Normal = Normal;
}

Now, in the geometry shader, we will catch these new values using the block  
in an array style:

#version 430
#pragma optimize(off)
#pragma debug(on)
layout(triangles) in;
layout(triangle_strip, max_vertices = 3) out;
// The important point here is “VertexData”. It must match with the 
vertex shader version.
// input interface block, from the vertex shader
in VertexData
{ 
    smooth vec2 TextCoord;
    smooth vec3 Normal;
} vertexIn[]; // The name of the variable doesn't have to match with 
the vertex shader's version
// Output interface block, going to the fragment shader
out Interpolators
{
    smooth vec2 TextCoord;
    smooth vec3 Normal;
}interpolators;

void main()
{   
   for(int i = 0; i < gl_in.length(); ++i)
   {
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      gl_Position = gl_in[i].gl_Position;
      interpolators.TextCoord = vertexIn[i].TextCoord; 
      interpolators.Normal = vertexIn[i].Normal;
      EmitVertex();
   }
   EndPrimitive();
}

Remember, all output variables and interface blocks defined in a 
geometry shader are per vertex.

In the fragment shader, we catch the interpolated values as always:

#version 430
#pragma optimize(off)
#pragma debug(on)
uniform sampler2D Image;
// From geometry shader or from vertex shader
in Interpolators
{
    smooth vec2 TextCoord;
    smooth vec3 Normal;
}interpData;
out vec4 FBColor;
void main()
{
    vec4 textureColor = texture2D(Image, interpData.TextCoord);
    // do something with interpData.normal;
    FBColor = vec4(textureColor.rgb, 1.0);
}

Now we have all the basic mechanisms in our hands that we will need to write a  
full featured geometry shader, so let's go with a shader that will make this type of 
shader interesting.

A crowd of butterflies
In this example, we are going to see how to render complex structures, creating all 
information on the fly.
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Our aim is to render a crowd of butterflies using the CPU as less as possible by 
performing calculations (transforms, flag aperture, butterfly’s yaw/pitch, and so on).  
We will start from a random distribution of points in the space. No vertex attributes 
other than the points position will be used, and from them, we will create for each 
point two textured rectangles (triangle strips), one for each of a butterfly's wings. We 
will also change the wings' apertures and butterflies' flying directions using distinct 
values based on the gl_PrimitiveID built-in variable (we will cover more on this 
variable later).

To summarize the way we are going to build these triangle strips from a single point, 
a picture is worth a thousand words:

With P, the original point size, we compute the corners of both triangle strips by 
adding or subtracting the wing dimensions that we are passing as a uniform variable.
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Now, let's get started with the code:

1.	 First, let's write our vertex shader, which, by the way, is the most simple 
vertex shader we could ever write:
#version 430
#pragma optimize(off)
#pragma debug(on)
layout (location = 0) in vec3 Position;
void main()
{
    /* This time we won't transform the position here, 
    but in the Geometry Shader*/
    gl_Position = vec4(Position, 1.0);
}

2.	 Now, to put all simple things together, let's see the fragment shader, which  
isn't very involved either:
#version 430
#pragma optimize(off)
#pragma debug(on)
uniform sampler2D Image;
// Interface block to pass the texture coordinates to the fragment 
shader
in Interpolators
{
    smooth vec2 TextCoord;
}interpData;

out vec4 FBColor;
void main()
{
    vec4 textureColor = texture2D(Image, interpData.TextCoord);
     /* To render only the parts where the texture is not 
      transparent, we discard those fragments who are 
      transparent in some degree */
    if(textureColor.a < 0.4)
    {
        discard;
    }
    FBColor = textureColor;
}
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3.	 Now, let's go with the core of our program, the geometry shader:
#version 430
#pragma optimize(off)
#pragma debug(on)
layout(points) in; // we feed the GS with points
/* The output will be two separated triangle strips, 4 vertices
each one. We will rotate each triangle strip using the shared edge 
as pivot */
layout(triangle_strip, max_vertices = 8) out;
uniform vec2 WingSize;
uniform int NumberOfPrimitives; // total number of points
uniform mat4 Modelview;
uniform mat4 Projection;
out Interpolators
{
    smooth vec2 TextCoord;
}interpData;
void main()
{   
    /* Alpha angle is the wings aperture angle. This will give us 
      a rotation in the range [5, 85] degrees */
    // gl_PrimitiveIDIn is the index of the current primitive  
    that is being processed. 
    float alpha = radians(5.0f + (gl_PrimitiveIDIn /  
    (NumberOfPrimitives - 1.0f)) * 80.0);
    // Beta angle is the orientation of the butterfly
    float beta = radians(-90.0f + (gl_PrimitiveIDIn /  
    (NumberOfPrimitives - 1.0f)) * 90.0f);
    // Matrix to translate the wing to the origin
    mat4 T = mat4(vec4(1,0,0,0),
                  vec4(0,1,0,0),
                  vec4(0,0,1,0),
                  vec4(-gl_in[0].gl_Position.xyz,1));
    
    // Matrix to translate the wing back to its original position
    mat4 Ti = mat4(vec4(1,0,0,0),
                   vec4(0,1,0,0),
                   vec4(0,0,1,0),
                   vec4(gl_in[0].gl_Position.xyz,1));
    /* Matrix to rotate the whole butterfly to change its flying 
      direction. This is a Z axis rotation matrix. */
    mat4 Rz = mat4(vec4(cos(beta),  sin(beta),  0, 0),
                   vec4(-sin(beta), cos(beta),  0, 0),
                   vec4(0,          0,          1, 0),
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                   vec4(0,          0,          0, 1));
    // Left wing creation.
    // Matrix to rotate the left wing and give an appearance of  
    moving wings. This is a Y axis rotation matrix
    mat4 Ry = mat4(vec4(cos(alpha),   0,   -sin(alpha),  0),
                   vec4(0,            1,   0,            0),
                   vec4(sin(alpha),   0,   cos(alpha),   0),
                   vec4(0,            0,   0,            1));
    // Final transform matrix
    mat4 M = Projection * Modelview * Rz * Ti * Ry * T;

4.	 Until now, we have only prepared the matrices to perform the rotations  
in the way the next diagram shows.

5.	 The butterfly positioning and wings aperture diagram that you get is  
as follows:

6.	 Now, let's compute the vertices. The process is very straightforward. 
Just compute the positions and the other vertex attributes and emit that 
vertex. When you are done with all the primitive's vertices, finish it with 
EndPrimitive():
    // Using the original point's position and the wing's size, 
we calculate each new vertex. Then we transform it with the 
accumulated matrix (M)
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    gl_Position = M * vec4(gl_in[0].gl_Position.x, gl_in[0]. 
    gl_Position.y - WingSize.y / 2.0f, gl_in[0].gl_Position.zw);
    // Create a proper texture coordinate for this vertex
    interpData.TextCoord = vec2(1.0f, 0.0f);
    EmitVertex();
    // 2nd vertex
    gl_Position = M * vec4(gl_in[0].gl_Position.x, gl_in[0]. 
    gl_Position.y + WingSize.y / 2.0f, gl_in[0].gl_Position.zw);
    interpData.TextCoord = vec2(1.0f, 1.0f);
    EmitVertex();
    
    // 3rd vertex
    gl_Position = M * vec4(gl_in[0].gl_Position.x - WingSize.x,  
    gl_in[0].gl_Position.y - WingSize.y / 2.0f, gl_in[0]. 
    gl_Position.zw);
    interpData.TextCoord = vec2(0.0f, 0.0f);
    EmitVertex();
    //4rd vertex
    gl_Position = M * vec4(gl_in[0].gl_Position.x - WingSize.x,  
    gl_in[0].gl_Position.y + WingSize.y / 2.0f, gl_in[0]. 
    gl_Position.zw);
    interpData.TextCoord = vec2(0.0f, 1.0f);
    EmitVertex();
    EndPrimitive();

7.	 Here we are done with the left wing. Now, because the right wing has an 
opposite rotation, we need to compute a new rotation matrix and a new 
accumulated transform matrix:
    // The aperture angle for the right wing is 180 - alpha
    alpha = 3.141592f - alpha;
    Ry = mat4(vec4(cos(alpha),  0, -sin(alpha), 0),
              vec4(0,           1, 0,           0),
              vec4(sin(alpha),  0, cos(alpha),  0),
              vec4(0,           0, 0,           1));
    M = Projection * Modelview * Rz * Ti * Ry * T;
    gl_Position = M * vec4(gl_in[0].gl_Position.x + WingSize.x,  
    gl_in[0].gl_Position.y - WingSize.y / 2.0f, gl_in[0]. 
    gl_Position.zw);
    interpData.TextCoord = vec2(0.0f, 0.0f);
    EmitVertex();
    gl_Position = M * vec4(gl_in[0].gl_Position.x + WingSize.x,  
    gl_in[0].gl_Position.y + WingSize.y / 2.0f, gl_in[0]. 
    gl_Position.zw);
    interpData.TextCoord = vec2(0.0f, 1.0f);
    EmitVertex();
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    gl_Position = M * vec4(gl_in[0].gl_Position.x, gl_in[0]. 
    gl_Position.y - WingSize.y / 2.0f, gl_in[0].gl_Position.zw);
    interpData.TextCoord = vec2(1.0f, 0.0f);
    EmitVertex();
    gl_Position = M * vec4(gl_in[0].gl_Position.x, gl_in[0]. 
    gl_Position.y + WingSize.y / 2.0f, gl_in[0].gl_Position.zw);
    interpData.TextCoord = vec2(1.0f, 1.0f);
    EmitVertex();
    EndPrimitive();
}

This was a long shader, but if you read it, the most complicated things are the 
transforms. The rest, creating and filling vertex attributes, is quite simple.

Now, as a reward, this is the final output of this shader:
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Summary
In this chapter, we have learnt how to use the GPU to offload the CPU in some 
rendering tasks. The butterflies example taught us how, parting from a plain  
array of 3D points, we can create on the fly more elaborated (in terms of mesh 
complexity) structures using only the GPU. A good exercise for you would be to  
give life to the butterflies by animating their wings (easy to achieve, changing 
the wings' aperture angle according to the time), coloring each butterfly instance 
differently based on gl_PrimitiveID, or calculating the strips' normal vectors to 
include lighting calculations.

In the next chapter, we will increase the flexibility of our renders with the usage  
of the compute shaders, which will allow us to perform other GPU calculations 
without being constrained by the pipeline's execution order.





Compute Shaders
Up to this point, we have followed the rendering pipeline rules. Data was always 
sent in the form of vertex buffers or textures and was transformed accordingly with 
very well defined steps. Now we will learn about a new mechanism to use the GPU 
in a more flexible way with all the advantages of GLSL. This means that, as opposed 
to the other GPU solutions, we will have all the available OpenGL texture formats 
(not a restricted subset like in CUDA or OpenCL), vector and matrix types, and  
built-in functions.

Compute shaders is a quite extensive topic, with a lot of details that cannot be 
covered in a single chapter of any book. It is for that reason that in this chapter,  
we will cover only the basics, a brief introduction of the compute shaders'  
language, and the possibilities that they could bring to us.

In this chapter, we will learn how generic GPU processes are arranged into the 
processor and how they are executed. We will not only focus on rendering and  
image modifications, but also on producing numerical results too.

Execution model
In the case of different shader types, the Rendering Pipeline decided how and  
when they had to be invoked. Since the Rendering Pipeline stopped working,  
we had to take care of its jobs—synchronization, thread management, and so on.

Anticipate a single computer shader execution. Computer shaders' terminology 
defines this as a work item. These work items cannot be invoked independently; they 
are separated in groups. A work group encapsulates an arbitrary number of work 
items, which is specified by the programmer but limited by the hardware capabilities. 
Work groups run all their items in a parallel way—more or less synchronized. Also, 
items inside a group can share memory and synchronization mechanisms. All work 
groups must have the same number of work items and each work group is executed 
independently from the others, totally isolated, and in an unspecified order.
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Furthermore, work groups are grouped by dimensions. We can choose to arrange 
them in one, two, or three dimensions.

The setup of the work items and work groups is split between the host application 
and the shaders' source code. In the host application, during the GL call that invokes 
the compute shader, we'll specify how many work groups we are going to use, and 
in the shader's source code, we'll define how many work items will compose a  
work group.

The dimensionality of work groups is meant to help us to index our problem. You 
would think that the more work groups and work items, the better, because that 
way we use more parts of the GPU and that will render in more performance. That is 
correct, but performance isn't everything. Although the same number of work items 
will be executed configuring ten work groups with ten work items (10 x 10 = 100) 
rather than if we configure five work groups in X dimension and two work groups in 
Y dimension, with ten work items per group (5 x 2 x 10 = 100), the index of the work 
item being executed could help us a lot depending on how the problem is structured. 
It is like processing a whole image accessing the pixels in a one-dimensional way 
versus using x and y to access the pixels.

From the shader, we can access some very useful information: the work group where 
the current work item is in, the ID of the current work item inside a work group, 
the global work item ID (work item ID multiplied by the work group size), and, few 
more. These IDs will help us to index arrays, images (or even arrays of images!), and 
buffers of one, two, and three dimensions. The built-in variables that are available in 
the language for helping us to manage and arrange those IDs are the following:

// Total number of work groups in each dimension
in uvec3 gl_NumWorkGroups;
// Number of work items inside a work group
const uvec3 gl_WorkGroupSize;
// Index of the work group that is currently in execution
in uvec3 gl_WorkGroupID;
// Index of the work item (inside a work group) that is currently in 
execution
in uvec3 gl_LocalInvocationID;
/* Global index of the current work item (gl_WorkGroupID *     
  gl_WorkGroupSize + gl_LocalInvocationID;) */
in uvec3 gl_GlobalInvocationID;
/*
This is a one dimensional representation of gl_LocalInvocationID (gl_
LocalInvocationID.z * gl_WorkGroupSize.x * gl_WorkGroupSize.y
    + gl_LocalInvocationID.y * gl_WorkGroupSize.x + 
    gl_LocalInvocationID.x;)
*/
uint gl_LocalInvocationIndex;
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But, if instead of traversing a one-dimensional array we have to traverse an image, 
we can arrange work items and work groups to use them to index both dimensions 
of the image, and that way set or get a pixel of the image. For instance, if we have an 
image with a size of 512 x 512, we can say that we are going to use work groups of 32 
items in X and 32 items in Y, and use 16 work groups in X and the other 16 in Y (32 x 
16 = 512).

The number of available work items and work groups is limited by the 
hardware. You can ask OpenGL in the host application for those limits.

Render to texture example
The first example will take a texture and will write into it some colors. To illustrate 
the use of work groups and work items, we will paint each pixel of the image with 
the index of the work group that processes that pixel. As we will use 16 x 16 work 
groups, the image will be filled with 16 x 16 solid block colors.

The shader invocation is done with this line: glDispatchCompute(16, 16, 1);.
That means that we are going to execute the shader with 16 work groups in the X 
and Y dimensions and 1 in the Z (1 is the minimum accepted value for a dimension).

#version 430
// Configure how many work items compose the work groups
// Because we are executing the shader with 16 x 16 work groups, we 
can handle images is 512 x 512 (16*32)
layout(local_size_x = 32,local_size_y = 32, local_size_z = 1) in;
// Declare the uniform variable that holds our image
uniform layout(rgba8) writeonly image2D Image;
void main()
{
  ivec2 position = ivec2(gl_GlobalInvocationID.xy);
  vec4 color=vec4(gl_WorkGroupID / vec3(gl_NumWorkGroups), 1.0);
  imageStore(Image, position, color);
}

There are some things to notice in the preceding few lines.

First, you can see that we configure the work item. Also, you can see new keywords 
in the uniform sampler declaration (we will address this later).
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Most importantly, we use the global ID (if we enumerate all work items linearly, the 
global ID would be that of the index) of the current work item. In this case, these 
values go from 0 to 511 on each dimension (16 work groups x 32 work items = 512 
shader executions), but the most important thing is the next line: to access the image, 
we are using a new texture access function (imageStore) that takes integral values, 
ranged from 0 to texture size 1. This is very different than in regular shaders, where 
texture coordinates were floating point variables and the values were normalized. 
This is done in this way in compute shaders in part to avoid any kind of filterings, 
roundings, or inaccuracies at the moment of writing into a texture. We have to 
specify the exact texel that we are going to access.

As promised, this shader produced a 16 x 16 blocky figure, like this one:

About the last example: in compute shaders, when you deal with images, you  
have to handle them in a different way than you do with vertex, fragment,  
or geometry shaders.
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The image's access mode and format have to be set up according to the  
following table:

Float image formats Integer image formats Unsigned int image formats
rgba32f rgba32i rgba32ui
rgba16f rgba16i rgba16ui
rg32f rgba8i rgb10_a2ui
rg16f rg32i rgba8ui
r11f_g11f_b10f rg16i rg32ui
r32f rg8i rg16ui
r16f r32i rg8ui
rgba16 r16i r32ui
rgb10_a2 r8i r16ui
rgba8 r8ui
rg16
rg8
r16
r8
rgba16_snorm
rgba8_snorm
rg16_snorm
rg8_snorm
r16_snorm
r8_snorm

As you have read in this line in the last example, uniform layout(rgba8) 
writeonly image2D Image;, we have used the layout qualifier enclosing  
the image format. This line also specifies the access mode.

In order to bind a texture in the host application, we cannot use the 
glBindTexture function as usual. We have to use a new function: 
glBindImageTexture(0, texID, 0, GL_FALSE, 0, GL_WRITE_
ONLY, GL_RGBA8);. The last two parameters must match with the 
texture declaration inside the compute shaders.
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The last thing we will cover regarding compute shaders that handle texture 
images is synchronization. Compute shader execution is asynchronous, so the 
glDispatchCompute function will return as soon as it sends the information to the 
GPU. It won't wait for the compute shader to finish, so it may happen that if you 
execute two compute shaders that overlap in time and one of the shaders writes into 
the image, the other shader may read incorrect values, so it's common to force the 
shader that writes into the image to finish before executing the other that reads from 
the same image. This is done with one of the synchronization functions provided by 
OpenGL in the host application part: glMemoryBarrier(GL_SHADER_IMAGE_ACCESS_
BARRIER_BIT);. Just call it immediately after the glDispatchCompute function to 
block further executions until the shader has finished its job.

Raw data computations
The following sample code is another very simple compute shader example, but it 
completes the basic sets of operations. First, we handled image data, now, we will 
handle raw data. In this example, the shader will receive two arrays of the same size, 
and we will use the shader to sum them together into a third array.

As always, let's go first with the shader's code:

#version 430
layout (local_size_x = 16, local_size_y = 1, local_size_z = 1) in;
uniform int BufferSize;
layout(std430, binding = 0) buffer InputBufferA{float inA[];};
layout(std430, binding = 1) buffer InputBufferB{float inB[];};
layout(std430, binding=2) buffer OutputBuffer{float outBuffer[];};
void main()
{
  uint index = gl_GlobalInvocationID.x;
  if(index >= BufferSize)
  {
    return;
  }
  outBuffer[index] = inA[index] + inB[index];
}

As you can see, we are using each work item to process only one array's element.  
The two important things here are the declaration of the buffers and the return  
that controls the access to our buffers.
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The first thing to notice is that, the declaration of the array contains some elements. 
As seen in previous chapters, they are like an interface block declaration with some 
particularities. Let's inspect the first buffer declaration:

•	 The term InputBufferA is the name of the interface block. It isn't used in  
the code.

•	 The float inA[]; global array declares an array of floats, and the variable 
that will hold them is inA.

•	 The buffer keyword denotes the type of the interface block.
•	 The binding = 0 declaration denotes that this buffer corresponds to the one 

that was linked to the binding point 0 in the host application.

The std430 storage qualifier is a memory layout qualifier. It contains information 
about the offset and alignment of the structure members (if the buffer is a buffer 
of structures). It is meant to be used with the shader interface blocks (buffer inputs 
for computer shaders). On the contrary, std140 has to be used with uniform blocks 
(a special block that packs uniform variables). The second thing is the condition 
that prevents out of bounds accesses in our buffers. That could happen because 
sometimes you could have more work items globally than elements in your buffer. 
For example, if our buffer has a size of 200 elements, and we use 13 work groups 
with 16 work items per work group, it makes a total of 208 executions, and our array 
is sized only to 200 elements. If we don't control those side cases, an error may stop 
the shader execution, or even worse, crash the application.

As with textures, buffers must be created and managed differently to work with 
compute shaders (GL_SHADER_STORAGE_BUFFER). A new type of vertex buffer  
target has been added to OpenGL to reflect this.

The following is a host application example of how to execute the previously 
mentioned compute shader:

constintarraySize = 200;
float A[arraySize]; // Input array A
float B[arraySize]; // Input array B
float O[arraySize]; // Output array
// fill with some sample values
for(size_t i = 0; i < arraySize; ++i)
{
  A[i] = (float)i;
  B[i] = arraySize - i - 1.0f;
  O[i] = 10000;
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}
// Create buffers
GLuintinA, inB, out;
glGenBuffers(1, &inA);
glBindBuffer(GL_SHADER_STORAGE_BUFFER, inA); // Bind buffer A
glBufferData(GL_SHADER_STORAGE_BUFFER, arraySize * sizeof(float), A, 
GL_STATIC_DRAW); // Fill Buffer data
glGenBuffers(1, &inB);
glBindBuffer(GL_SHADER_STORAGE_BUFFER, inB); // Bind buffer B
glBufferData(GL_SHADER_STORAGE_BUFFER, arraySize * sizeof(float), B, 
GL_STATIC_DRAW); // Fill Buffer data
glGenBuffers(1, &out);
glBindBuffer(GL_SHADER_STORAGE_BUFFER, out); // Bind buffer O
glBufferData(GL_SHADER_STORAGE_BUFFER, arraySize * sizeof(float), O, 
GL_STATIC_DRAW); // Fill Buffer data
//Bind buffers to fixed binding points (later will be used in the 
shader)
glBindBufferBase(GL_SHADER_STORAGE_BUFFER, 0, inA);
glBindBufferBase(GL_SHADER_STORAGE_BUFFER, 1, inB);
glBindBufferBase(GL_SHADER_STORAGE_BUFFER, 2, out);
glUseProgram(computeShaderID); // Bind compute shader
glDispatchCompute(13, 1, 1); // Execute the compute shader with 13 
workgroups
glMemoryBarrier(GL_SHADER_IMAGE_ACCESS_BARRIER_BIT | GL_SHADER_
STORAGE_BARRIER_BIT | GL_BUFFER_UPDATE_BARRIER_BIT); // force 
completeness before read back data
// Read back the output buffer to check the results
glBindBuffer(GL_SHADER_STORAGE_BUFFER, out); // Bind output buffer
// Obtain a pointer to the output buffer data
float* data = (float*)glMapBuffer(GL_SHADER_STORAGE_BUFFER, GL_READ_
ONLY);
// Copy the data to our CPU located memory buffer
memcpy(&O[0], data, sizeof(float)*arraySize);
// Release the GPU pointer
glUnmapBuffer(GL_SHADER_STORAGE_BUFFER);
// From here, write results to a file, screen or send them back to 
memory for further process
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Summary
In this chapter, we have learnt the basic concepts of compute shaders. As said, 
they are a complex topic, mainly because of the manual synchronization that must 
be done to ensure correct results and high performance. We only saw a humble 
mechanism for that: the glMemoryBarrier function which blocks execution until 
certain operations have finished, but there are many others, even inside the shaders 
(atomic operations and counters, control barriers, and so on).

It's up to you to discover more about compute shader features such as shared 
memory access for the work items inside a work group or how to use buffers with 
complex data structures in conjunction with images to create amazing shaders.  
You can also learn how to perform pure mathematical functions such as Fast  
Fourier Transformations or LU/SVD decompositions to make mathematical 
algorithms two orders of magnitude faster than doing it simply in CPU.

To conclude this book, I would encourage you to start writing your own shaders, 
slowly at first, assimilating the language's special features, understanding the 
underlying mechanisms, and coding more and more complex algorithms. With the 
mechanisms that this book provides, any visual effect that you may have seen in a 
video game or even in a CG movie can be achieved; so remember, just after finishing 
the book, start coding!
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